Skip to main content

A Generalization of the Familial Longitudinal Binary Model to the Multinomial Setup

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 218))

Abstract

When repeated binary responses along with time dependent covariates are collected over a short period of time from the members of a large number of independent families, there exits a well developed binary dynamic mixed logit (BDML) model to analyze such familial longitudinal binary data. As far as the inferences are concerned, this BDML model has been fitted by using the generalized quasi-likelihood (GQL) and the well known maximum likelihood (ML) methods. There are however situations in practice where categorical/multinomial responses with more than two categories are repeatedly collected from all members of the family. However, the analysis for this type of familial longitudinal multinomial data is not adequately addressed in the literature. We offer two main contributions in this paper. First, for the analysis of familial longitudinal multinomial data, we propose a multinomial dynamic mixed logit (MDML) model as a generalization of the BDML model and derive the basic properties such as non-stationary mean, variance and correlations for the repeated multinomial responses. Next, to understand these basic properties, we develop step by step likelihood estimating equations for the parameters involved in these properties. The relative asymptotic efficiency performance of the ML and GQL approaches is examined through a simulation study based on repeated binary responses, for example, from a large number of independent families each consisting of two members, causing both familial and longitudinal correlations. Also, a real life example on repeated multinomial data analysis is considered as an illustration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Breslow, N., Clayton, D.G.: Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88, 9–25 (1993)

    MATH  Google Scholar 

  • Chen, B., Yi, G.Y., Cook, R.: Likelihood analysis of joint marginal and conditional models for longitudinal categorical data. Can. J. Stat. 37, 182–205 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Conaway, M.R.: Analysis of repeated categorical measurements with conditional likelihood methods. J. Am. Stat. Assoc. 84, 53–62 (1989)

    Article  MathSciNet  Google Scholar 

  • Crowder, M.: On the use of a working correlation matrix in using generalized linear models for repeated measures. Biometrika 82, 407–410 (1995)

    Article  MATH  Google Scholar 

  • Fienberg, S.E., Bromet, E.J., Follmann, D., Lambert, D., May, S.M.: Longitudinal analysis of categorical epidemiological data: a study of three mile island. Environ. Health Perspect. 63, 241–248 (1985)

    Article  Google Scholar 

  • Lipsitz, S.R., Kim, K., Zhao, L.: Analysis of repeated categorical data using generalized estimating equations. Stat. Med. 13, 1149–1163 (1994)

    Article  Google Scholar 

  • Sutradhar, B.C.: An overview on regression models for discrete longitudinal responses. Stat. Sci. 18, 377–393 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Sutradhar, B.C.: On exact quasilikelihood inference in generalized linear mixed models. Sankhya: Indian J. Stat. 66, 261–289 (2004)

    MathSciNet  MATH  Google Scholar 

  • Sutradhar, B.C.: Dynamic Mixed Models for Familial Longitudinal Data. Springer, New York (2011)

    Book  MATH  Google Scholar 

  • Sutradhar, B.C.: Longitudinal Categorical Data Analysis. Springer, New York (2014)

    Book  MATH  Google Scholar 

  • Sutradhar, B.C., Das, K.: On the efficiency of regression estimators in generalized linear models for longitudinal data. Biometrika 86, 459–465 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Sutradhar, B.C., Farrell, P.J.: On optimal lag 1 dependence estimation for dynamic binary models with application to asthma data. Sankhya B 69, 448–467 (2007)

    MathSciNet  MATH  Google Scholar 

  • Sutradhar, B.C., Rao, R.P., Pandit, V.N.: Generalized method of moments versus generalized quasi-likelihood inferences in binary panel data models. Sankhya B 70, 34–62 (2008)

    MATH  Google Scholar 

  • Ten Have, T.R., Morabia, A.: Mixed effects models with bivariate and univariate association parameters for longitudinal bivariate binary response data. Biometrics 55, 85–93 (1999)

    Article  MATH  Google Scholar 

  • Williamson, J.M., Kim, K.M., Lipsitz, S.R.: Analyzing bivariate ordinal data using a global odds ratio. J. Am. Stat. Assoc. 90, 1432–1437 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the audience of the symposium and a referee for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brajendra C. Sutradhar .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Algebras for the Likelihood Estimating Equation (32) for β

To obtain the formula for \(\frac{\partial \pi _{(ij1)c}^{{\ast}}} {\partial \beta }\) in (31), we first compute the derivatives with respect to category based location regression parameters. Thus,

$$\displaystyle\begin{array}{rcl} \frac{\partial \pi _{(ij1)c}^{{\ast}}} {\partial \beta _{c}^{{\ast}}} & =& \pi _{(ij1)c}^{{\ast}}[1 -\pi _{ (ij1)c}^{{\ast}}]x_{ ij1} \\ \frac{\partial \pi _{(ij1)c}^{{\ast}}} {\partial \beta _{k}^{{\ast}}} & =& -[\pi _{(ij1)c}^{{\ast}}\pi _{ (ij1)k}^{{\ast}}]x_{ ij1},{}\end{array}$$
(65)

yielding

$$\displaystyle\begin{array}{rcl} \frac{\partial \pi _{(ij1)c}^{{\ast}}} {\partial \beta } & =& \left (\begin{array}{*{10}c} -\pi _{(ij1)1}^{{\ast}}\pi _{(ij1)c}^{{\ast}}\\ \vdots \\ \pi _{(ij1)c}^{{\ast}}[1 -\pi _{(ij1)c}^{{\ast}}]\\ \vdots \\ -\pi _{(ij1)(C-1)}^{{\ast}}\pi _{(ij1)c}^{{\ast}}\\ \end{array} \right ) \otimes x_{ij1}: (J - 1)p \times 1 \\ & =& \left [\pi _{(ij1)c}^{{\ast}}(\delta _{ (ij1)c} -\pi _{(ij1)}^{{\ast}})\right ] \otimes x_{ ij1}, {}\end{array}$$
(66)

where ⊗ stands for the Kronecker product, and the formulas for δ (ij1)c and \(\pi _{(ij1)}^{{\ast}}\) vectors are as in (32). Similarly, to compute \(\frac{\partial \eta _{ijt\vert t-1}^{{\ast}(c)}(g)} {\partial \beta }\) for (31), we first obtain the local derivatives of the conditional probability function \(\eta _{ijt\vert t-1}^{{\ast}(c)}(g)\) given in (10) for t = 2, , T, as

$$\displaystyle\begin{array}{rcl} \frac{\partial \eta _{ijt\vert t-1}^{{\ast}(c)}(g)} {\partial \beta _{c}^{{\ast}}} & =& \eta _{ijt\vert t-1}^{{\ast}(c)}(g)[1 -\eta _{ ijt\vert t-1}^{{\ast}(c)}(g)]x_{ ijt} \\ \frac{\partial \eta _{ijt\vert t-1}^{{\ast}(c)}(g)} {\partial \beta _{k}^{{\ast}}} & =& -[\eta _{ijt\vert t-1}^{{\ast}(c)}(g)\eta _{ ijt\vert t-1}^{{\ast}(k)}(g)]x_{ ijt},{}\end{array}$$
(67)

yielding the derivative with respect to the global parameter vector β as

$$\displaystyle\begin{array}{rcl} \frac{\partial \eta _{ijt\vert t-1}^{{\ast}(c)}(g)} {\partial \beta } & =& \left (\begin{array}{*{10}c} -\eta _{ijt\vert t-1}^{{\ast}(1)}(g)\eta _{ijt\vert t-1}^{{\ast}(c)}(g)\\ \vdots \\ \eta _{ijt\vert t-1}^{{\ast}(c)}(g)[1 -\eta _{ijt\vert t-1}^{{\ast}(c)}(g)]\\ \vdots \\ -\eta _{ijt\vert t-1}^{{\ast}(C-1)}(g)\eta _{ijt\vert t-1}^{{\ast}(c)}(g)\\ \end{array} \right ) \otimes x_{ijt}: (J - 1)p \times 1 \\ & =& \left [\eta _{ijt\vert t-1}^{{\ast}(c)}(g)(\delta _{ (ij,t-1)c} -\eta _{ijt\vert t-1}^{{\ast}}(g))\right ] \otimes x_{ ijt}, {}\end{array}$$
(68)

where \(\eta _{ijt\vert t-1}^{{\ast}}(g)\) is the (C − 1) × 1 vector of transitional probabilities as in (32).

1.2 Algebras for the Likelihood Estimating Equation (39) for γγ M

To compute the derivative in (37) through (38), it is convenient to find the derivative with respect to the local dynamic dependence parameter vector γ c for \(c = 1,\ldots,C - 1\). Thus, we write

$$\displaystyle\begin{array}{rcl} \frac{\partial \eta _{ijt\vert t-1}^{{\ast}(h)}(g)} {\partial \gamma _{c}} & =& \left \{\begin{array}{ll} \delta _{(ij,t-1)g}\eta _{ijt\vert t-1}^{{\ast}(c)}(g)[1 -\eta _{ijt\vert t-1}^{{\ast}(c)}(g)] & \mbox{ for}\;h = c; h,c = 1,\ldots,C - 1 \\ -\delta _{(ij,t-1)g}\eta _{ijt\vert t-1}^{{\ast}(c)}(g)\eta _{ijt\vert t-1}^{{\ast}(h)}(g) & \mbox{ for}\;h\neq c; h,c = 1,\ldots,C - 1 \\ nonumber\ -\delta _{(ij,t-1)g}\eta _{ijt\vert t-1}^{{\ast}(c)}(g)\eta _{ijt\vert t-1}^{{\ast}(C)}(g) & \mbox{ for}\;h = C;\; c = 1,\ldots,C - 1, \end{array} \right.{}\end{array}$$
(69)

for all g = 1, , C, with

$$\displaystyle{\delta _{(ijt)g} = \left \{\begin{array}{ll} [01'_{g-1},1,01'_{C-1-g}]'&\mbox{ for}\;g = 1,\ldots,C - 1 \\ 01_{C-1} & \mbox{ for}\;g = C, \end{array} \right.}$$

as in (32), leading to

$$\displaystyle\begin{array}{rcl} \frac{\partial log\;L_{i}(\tau _{i})} {\partial \gamma _{c}} & \equiv & \frac{\partial log\;L_{i}(\beta,\gamma _{M},\sigma _{\tau })} {\partial \gamma _{c}} \\ & =& \sum _{j=1}^{n_{i} }\sum _{t=2}^{T}\sum _{ h=1}^{C}\sum _{ g=1}^{C}\left \{ \frac{y_{ijth}} {\eta _{ijt\vert t-1}^{{\ast}(h)}(g)} \frac{\partial \eta _{ijt\vert t-1}^{{\ast}(h)}(g)} {\partial \gamma } \right \} \\ & =& \sum _{j=1}^{n_{i} }\sum _{t=2}^{T}\sum _{ g=1}^{C}y_{ ijtc}\delta _{(ij,t-1)g}[1 -\eta _{ijt\vert t-1}^{{\ast}(c)}(g)] \\ & & -\sum _{j=1}^{n_{i} }\sum _{t=2}^{T}\sum _{ g=1}^{C}\sum _{ h\neq c}^{C} \frac{y_{ijth}} {\eta _{ijt\vert t-1}^{{\ast}(h)}(g)}\delta _{(ij,t-1)g}\left (\eta _{ijt\vert t-1}^{{\ast}(c)}(g)\eta _{ ijt\vert t-1}^{{\ast}(h)}(g)\right ) \\ & =& \sum _{j=1}^{n_{i} }\sum _{t=2}^{T}\sum _{ g=1}^{C}y_{ ijtc}\delta _{(ij,t-1)g} \\ & & -\sum _{j=1}^{n_{i} }\sum _{t=2}^{T}\sum _{ g=1}^{C}\sum _{ h=1}^{C}y_{ ijth}\delta _{(ij,t-1)g}\left (\eta _{ijt\vert t-1}^{{\ast}(c)}(g)\right ) \\ & =& \sum _{j=1}^{n_{i} }\sum _{t=2}^{T}\sum _{ g=1}^{C}\delta _{ (ij,t-1)g}\left [y_{ijtc} -\left (\eta _{ijt\vert t-1}^{{\ast}(c)}(g)\right )\right ], {}\end{array}$$
(70)

for \(c = 1,\ldots,C - 1\).

1.3 Algebras for the Likelihood Estimating Equation (47) for σ τ

The derivative \(\frac{\partial \pi _{(ij1)c}^{{\ast}}} {\partial \sigma _{\tau }}\) in (46) follows from (9) and is given by

$$\displaystyle\begin{array}{rcl} \frac{\partial \pi _{(ij1)c}^{{\ast}}} {\partial \sigma _{\tau }} & =& \frac{\partial } {\partial \sigma _{\tau }}\left \{\begin{array}{ll} \frac{\exp (x'_{ijt}\beta _{c}^{{\ast}}+\sigma _{\tau }\tau _{ i})} {1+\sum _{g=1}^{C-1}\exp (x'_{ijt}\beta _{g}^{{\ast}}+\sigma _{\tau }\tau _{i})} & \mbox{ for}\;c = 1,\ldots,C - 1 \\ \frac{1} {1+\sum _{g=1}^{C-1}\exp (x'_{ijt}\beta _{g}^{{\ast}}+\sigma _{\tau }\tau _{i})} & \mbox{ for}\;c = C,\end{array} \right. \\ & =& \left \{\begin{array}{ll} \tau _{i}\pi _{(ij1)c}^{{\ast}}\pi _{(ij1)C}^{{\ast}} &\mbox{ for}\;c = 1,\ldots,C - 1 \\ -\tau _{i}\pi _{(ij1)C}^{{\ast}}[1 -\pi _{(ij1)C}^{{\ast}}]&\mbox{ for}\;h = C; \end{array} \right.{}\end{array}$$
(71)

and similarly, the derivative \(\frac{\partial \eta _{ijt\vert t-1}^{{\ast}(c)}(g)} {\partial \sigma _{\tau }}\) in (46) follows from (10), and it has the formula given by

$$\displaystyle\begin{array}{rcl} \frac{\partial } {\partial \sigma _{\tau }}[\eta _{ijt\vert t-1}^{{\ast}(c)}(g)]& =& \frac{\partial } {\partial \sigma _{\tau }}\left \{\begin{array}{ll} \frac{\exp \,\left [x'_{ijt}\beta _{c}^{{\ast}}+\gamma '_{ c}y_{ij,t-1}^{(g)}+\sigma _{\tau }\tau _{ i}\right ]} {1\,+\,\sum _{v=1}^{C-1}\exp \,\left [x'_{ijt}\beta _{v}^{{\ast}}+\gamma '_{v}y_{ij,t-1}^{(g)}+\sigma _{\tau }\tau _{i}\right ]},&\mbox{ for}\;c = 1,\ldots,C - 1 \\ \frac{1} {1\,+\,\sum _{v=1}^{C-1}\exp \,\left [x'_{ijt}\beta _{v}^{{\ast}}+\gamma '_{v}y_{ij,t-1}^{(g)}+\sigma _{\tau }\tau _{i}\right ]},&\mbox{ for}\;c = C,\\ \end{array} \right. \\ & =& \left \{\begin{array}{ll} \tau _{i}\eta _{ijt\vert t-1}^{{\ast}(c)}(g)\eta _{ijt\vert t-1}^{{\ast}(C)}(g) &\mbox{ for}\;c = 1,\ldots,C - 1 \\ -\tau _{i}\eta _{ijt\vert t-1}^{{\ast}(C)}(g)[1 -\eta _{ijt\vert t-1}^{{\ast}(C)}(g)]&\mbox{ for}\;c = C. \end{array} \right.{}\end{array}$$
(72)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sutradhar, B.C., Viveros-Aguilera, R., Mallick, T.S. (2016). A Generalization of the Familial Longitudinal Binary Model to the Multinomial Setup. In: Sutradhar, B. (eds) Advances and Challenges in Parametric and Semi-parametric Analysis for Correlated Data. Lecture Notes in Statistics(), vol 218. Springer, Cham. https://doi.org/10.1007/978-3-319-31260-6_5

Download citation

Publish with us

Policies and ethics