Skip to main content

Zero-Inflated Spatial Models: Application and Interpretation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 218))

Abstract

Many environmental applications, such as species abundance studies, rainfall monitoring or tornado count reports, yield data with a preponderance of zero counts. Although standard statistical distributions may not fit these data, a large body of literature has been dedicated to methods for modeling zero-inflated data. One type of regression model for zero-inflated data is categorized as a mixture model. Mixture models postulate two types of zeros, represented using a latent variable, and model their probabilities separately. The latent classification of zeros may be of particular interest as it can provide important clues to physical characteristics associated with, for example, habitat suitability or resistance to disease or pest infestations. Different zero-inflated models can be developed depending on the biological and physical characteristics of the application at hand. Here, several zero-inflated spatial models are applied to a case study of spruce weevil (Pissodesstrobi) infestations in a Sitka spruce tree plantation. The data illustrate the unique features distinguished by various models and show the importance of using expert knowledge to inform model structures that in turn provide insight into underlying biological processes driving the probability of belonging to the zero, resistant, component. For instance, one model focuses on individually resistant trees located among infested trees. Another focuses on clusters of resistant trees which are likely located in unsuitable habitats. We apply six models: a standard generalized linear model (GLM); an overdispersion model; a random effects zero-inflated model; a conditional autoregressive random effects model (CAR); a multivariate CAR (MCAR) model; and a model developed using discrete random effects to accommodate spatial outliers. We discuss the distinct features identified by the zero-inflated spatial models and make recommendations regarding their application in general.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal, D.K., Gelfand, A.E., Citron-Pousty, S.: Zero-inflated models with application to spatial count data. Environ. Ecol. Stat. 9, 341–355 (2002)

    Article  MathSciNet  Google Scholar 

  • Ainsworth, L.M., Dean, C.B.: Zero-inflated spatial models: web supplement. http://www.stat.sfu.ca/~dean/students/ainsworth.html#nav (2007)

  • Ainsworth, L.M., Dean, C.B.: Detection of local and global outliers in mapping studies. Environmetrics 19, 21–37 (2008)

    Article  MathSciNet  Google Scholar 

  • Alfo, M., Maruotti, A.: Two-part regression models for longitudinal zero-inflated count data. Can. J. Stat. 38 (2), 197–216 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Besag, J., York, J., Mollié, A.: Bayesian image restoration with two applications in spatial statistics. Ann. Inst. Stat. Math. 43 (1), 1–59 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Breslow, N.E., Clayton, D.G.: Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88, 9–25 (1993)

    MATH  Google Scholar 

  • Chen, J., Knalili, A.: Order selection in finite mixture models. with a nonsmooth penalty, J. Am. Stat. Assoc. 103, 1674–1683 (2008)

    Google Scholar 

  • Consul, P.C., Jain, G.C.: A generalization of the Poisson distribution. Technometrics 15 (4), 791–799 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Diao, L., Cook, R., Lee, K.: A copula model for marked point processes. Lifetime Data Anal. 19, 463–489 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Dobbie, M.J., Welsh, A.H.: Modelling correlated zero-inflated count data. Aust. N. Z. J. Stat. 43, 431–444 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Eberly, L.E., Carlin, B.P.: Identifiability and convergence issues for Markov chain Monte Carlo fitting of spatial models. Stat. Med. 19, 2279–2294 (2000)

    Article  Google Scholar 

  • Feng, C.X., Dean, C.B.: Joint analysis of multivariate spatial count and zero-heavy count outcomes using common spatial factor models. Environmetrics 23 (6), 493–508 (2012)

    Article  MathSciNet  Google Scholar 

  • Gelman, A.: Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 1, 515–533 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman, A., Hill, J.: Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, New York (2007)

    Google Scholar 

  • Gelman, A., Rubin, D.: Inference from iterative simulation using multiple sequences (with discussion). Stat. Sci. 7, 457–511 (1992)

    Article  Google Scholar 

  • Gelman, A., Meng, X., Stern, H.: Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Stat. Sin. 6, 733–807 (1996)

    MathSciNet  MATH  Google Scholar 

  • Gilks, W.R., Wild, P.: Adaptive rejection sampling for Gibbs sampling. Appl. Stat. 41 (2), 337–348 (1992)

    Article  MATH  Google Scholar 

  • Hall, D.B.: Zero-inflated Poisson and binomial regression with random effects: a case study. Biometrics 56, 1030–1039 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, D.B., Zhang, Z.: Marginal models for zero-inflated clustered data. Stat. Model. 4, 161–180 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Hardin, J.W., Hilbe, J.M., Hible, J.: Generalized Linear Models and Extensions, 2nd edn. Stata Press, Texas (2007)

    MATH  Google Scholar 

  • Hasan, M.T., Sneddon, G.: Zero-inflated Poisson regression for longitudinal data. Commun. Stat. Simul. Comput. 38 (3), 638–653 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Hasan, T., Sneddon, G., Ma, R.: Pattern-mixture zero-inflated mixed models for longitudinal unbalanced count data with excessive zeros. Biom. J. 51 (6), 946–960 (2009)

    Article  MathSciNet  Google Scholar 

  • Hatfield, L., Boye, M., Hackshaw, M., Carlin, B.: Multilevel Bayesian models for survival times and longitudinal patient-reported outcomes with many zeros. J. Am. Stat. Assoc. 107 (499), 875–885 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • He, F., Alfaro, R.: White pine Weevil (Coleoptera: Curculionidae) attack on white spruce: spatial and temporal patterns. Environ. Entomol. 26 (4), 888–895 (1997)

    Article  Google Scholar 

  • Heilbron, D.: Zero-altered and other regression models for count data with added zeros. Biom. J. 36 (5), 531–547 (1994)

    Article  MATH  Google Scholar 

  • Jin, X., Carlin, B.P., Banerjee, S.: Generalized hierarchical multivariate CAR models for areal data. Biometrics 61, 950–961 (2005). doi:10.1111/j.1541–0420.2005.00359.x

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, V.: A Bayesian χ 2 test for goodness of fit. Ann. Stat. 32 (6), 2361–2384 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Kuhnert, P.M., Martin, T.G., Mengersen, K., Possingham, H.P.: Assessing the impacts of grazing levels on bird density in woodland habitat: a Bayesian approach using expert opinion. Environmetrics 16, 717–747 (2005)

    Article  MathSciNet  Google Scholar 

  • Lambert, D.: Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34, 1–14 (1992)

    Article  MATH  Google Scholar 

  • Lawless, J.F.: Negative binomial and mixed Poisson regression. Commun. Stat. 15, 209–225 (1987)

    MathSciNet  MATH  Google Scholar 

  • Lawson, A.B., Clark, A.: Spatial mixture relative risk models applied to disease mapping. Stat. Med. 21 (3), 359–370 (2002)

    Article  Google Scholar 

  • Liang, K., Zeger, S.: Longitudinal data analysis using generalized linear models. Biometrika 73, 13–22 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Lunn, D., Jackson, C., Best, N., Thomas, A., Speigelhalter, D.: The Bugs Book - A Practical Introduction to Bayesian Analysis. CRC Press, Chapman and Hall, Boca Raton (2012)

    MATH  Google Scholar 

  • Martin, T.G., Wintle, B.A., Rhodes, J.R., Kuhnert, P.M., Field, S.A., Low-Choy, S.J., Tyre, A.J., Possingham, H.P.: Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol. Lett. 8, 1235–1246 (2005)

    Article  Google Scholar 

  • McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman and Hall, New York (1989)

    Book  MATH  Google Scholar 

  • Mullahy, J.: Specification and testing of some modified count data models. J. Econ. 33, 341–365 (1986)

    Article  MathSciNet  Google Scholar 

  • Nathoo, F.: Joint spatial modeling of recurrent infection and growth with processes under intermittent observation. Biometrics 66, 336–346 (2010). doi:10.1111/j.1541-0420.2009.01305.x

    Article  MathSciNet  MATH  Google Scholar 

  • Nathoo, F., Dean, C.B.: A mixed mover-stayer model for spatiotemporal two-state processes. Biometrics 63, 881–891 (2007). doi:10.1111/j.1541-0420.2007.00752.x

    Article  MathSciNet  MATH  Google Scholar 

  • Rathbun, S.L., Fei, S.: A spatial zero-inflated Poisson regression model for oak regeneration. Environ. Ecol. Stat. 13, 409–426 (2006)

    Article  MathSciNet  Google Scholar 

  • Ridout, M., Demetrio, C.G.B., Hinde, J.: Models for count data with many zeros. In: International Biometric Conference, Cape Town (1998)

    Google Scholar 

  • Rodrigues-Motta, M., Pinheiro, H.P., Martins, E.G., Araujo, M.S., dos Reis, S.F.: Multivariate models for correlated count data. J. Appl. Stat. 40 (7), 1586–1596 (2013)

    Article  MathSciNet  Google Scholar 

  • Spiegelhalter, D., Thomas, A., Best, N., Lunn, D.: WinBUGS User Manual Version 1.4. Medical Research Council Biostatistics Unit, Cambridge (2003)

    Google Scholar 

  • Stroup, W.W.: Generalized linear mixed models, modern concepts, methods and applications. CRC Press, Taylor & Francis Group, New York (2013)

    MATH  Google Scholar 

  • Tzala, E., Best, N.: Bayesian latent variable modelling of multivariate spatio-temporal variation in cancer mortality. Stat. Methods Med. Res. 17, 97–118 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Velarde, L.G.C., Migon, H.S., Pereira, B.B.: Spate-time modeling of rainfall data. Environmetrics 15, 561–576 (2004)

    Article  Google Scholar 

  • Ver Hoef, J.M., Jansen, J.K.: Space-time zero-inflated count models of Harbour Seals. Environmetrics 18 (7), 697–712 (2007)

    Article  MathSciNet  Google Scholar 

  • Wang, K., Yau, K.K.W., Lee, A.H.: A zero-inflated Poisson mixed model to analyze diagnosis related groups with majority of same-day hospital stays. Comput. Methods Programs Biomed. 68, 195–203 (2002)

    Article  Google Scholar 

  • Wikle, C.K., Anderson, C.J.: Climatological analysis of tornado report counts using a hierarchical Bayesian spatio-temporal model. J. Geophys. Res. Atmos. 108, 9005 (2003). doi:10.1029/2002JD002806

    Article  Google Scholar 

  • Williams, D.A. (1982). Extra-binomial variation in logistic linear models. Appl. Stat. 31 (2), 144–148 (1982)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Natural Sciences and Engineering Research Council of Canada for research funding. We thank Erin Lundy and Alisha Albert-Green for their assistance with the literature review for this paper. We would also like to thank all those who have provided valuable feedback on this work: Giovani da Silva for his review and helpful comments, the ISS-2015 Symposium audience for their thoughtful questions, and the ISS reviewer and Proceedings editor for their useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Ainsworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ainsworth, L.M., Dean, C.B., Joy, R. (2016). Zero-Inflated Spatial Models: Application and Interpretation. In: Sutradhar, B. (eds) Advances and Challenges in Parametric and Semi-parametric Analysis for Correlated Data. Lecture Notes in Statistics(), vol 218. Springer, Cham. https://doi.org/10.1007/978-3-319-31260-6_3

Download citation

Publish with us

Policies and ethics