Skip to main content

miRNA as Prognostic and Therapeutic Targets in Tumor of Male Urogenital Tract

  • Chapter
  • First Online:
Molecular Targets and Strategies in Cancer Prevention

Abstract

miRNAs are endogenous, single-stranded, short non-coding RNA sequences (about 22 nucleotides) capable to negative modulate the post-transcriptional expression of genes by binding the complementary 3′ untranslated region of mRNA targets. miRNAs work in the translation of targeted mRNA acting as antisense oligodeoxynucleotides. They are synthesized in the nucleus and then transported into cytoplasm where the maturation process is carried out. Furthermore, miRNAs can bind either to the 3′ untranslated region of the mRNA target through imperfect complementarity, or at multiple sites inhibiting the interaction of the mRNA with the ribosomal complex and the translational machinery. Moreover, the not perfect complementarity with the target results in the fact that miRNAs have multiple intracellular targets, and it leads to an amplification of the biological effects. Currently, in the human genome, the number of encoded miRNAs is about 1000. They play an important role in self development, differentiation, proliferation, cell-cycle control, apoptosis and metabolism. Several diseases, such as cancer, have been associated with distinct miRNA signatures, and it means that specific miRNA programs are activated in different pathophysiological processes. Therefore, there has been an exponential growth for the regulatory roles of miRNAs in the development of diseases. Actually, several recent studies indicate that miRNAs could be suitable biomarkers for cancer diagnosis as well as prognostic and therapeutic tools for solid or hematopoietic malignancies [1, 2]. miRNAs, which are upregulated in cancer cells and contribute to carcinogenesis by inhibiting tumor suppressor genes, are considered oncogenic miRNAs (OncomiRs), while downregulated miRNAs, that normally prevent cancer development by inhibiting the expression of proto-oncogenes, are known as tumor suppressor miRNAs. The most important advantage in miRNAs is the multiple targeting of different intracellular molecules that results in the amplification of the biological effect induced by miRNA. Similarly to the treatment of tumours with target based agents, the targeting of multiple signal transduction components can be useful in overcoming the redundancy of tumorigenic pathways in cancer cells. It is also of crucial importance to avoid the so-called off-target effects induced by miRNAs in normal tissues and thus it becomes essential to deliver the nucleic acids specifically in tumour tissues sparing normal counterparts [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pichler M, Calin GA. MicroRNAs in cancer: from developmental genes in worms to their clinical application in patients. Br J Cancer. 2015;113:569–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tagliaferri P, Rossi M, Di Martino MT, Amodio N, Leone E, et al. Promises and challenges of MicroRNA-based treatment of multiple myeloma. Curr Cancer Drug Targets. 2012;12:838–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boccellino M, Alaia C, Misso G, Cossu AM, Facchini G, et al. Gene interference strategies as a new tool for the treatment of prostate cancer. Endocrine. 2015;49:588–605.

    Article  CAS  PubMed  Google Scholar 

  4. Purdue MP, Devesa SS, Sigurdson AJ, McGlynn KA. International patterns and trends in testis cancer incidence. Int J Cancer. 2005;115:822–7.

    Article  CAS  PubMed  Google Scholar 

  5. Chia VM, Quraishi SM, Devesa SS, Purdue MP, Cook MB, et al. International trends in the incidence of testicular cancer, 1973-2002. Cancer Epidemiol Biomarkers Prev. 2010;19:1151–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.

    Article  CAS  PubMed  Google Scholar 

  7. Rosen A, Jayram G, Drazer M, Eggener SE. Global trends in testicular cancer incidence and mortality. Eur Urol. 2011;60:374–9.

    Article  PubMed  Google Scholar 

  8. Sagalowsky AI. Current considerations in the diagnosis and initial treatment of testicular cancer. Compr Ther. 1994;20:688–94.

    CAS  PubMed  Google Scholar 

  9. Daniels Jr JL, Stutzman RE, McLeod DG. A comparison of testicular tumors in black and white patients. J Urol. 1981;125:341–2.

    PubMed  Google Scholar 

  10. Moller H. Trends in incidence of testicular cancer and prostate cancer in Denmark. Hum Reprod. 2001;16:1007–11.

    Article  CAS  PubMed  Google Scholar 

  11. Moller H, Prener A, Skakkebaek NE. Testicular cancer, cryptorchidism, inguinal hernia, testicular atrophy, and genital malformations: case-control studies in Denmark. Cancer Causes Control. 1996;7:264–74.

    Article  CAS  PubMed  Google Scholar 

  12. Aguirre D, Nieto K, Lazos M, Pena YR, Palma I, et al. Extragonadal germ cell tumors are often associated with Klinefelter syndrome. Hum Pathol. 2006;37:477–80.

    Article  CAS  PubMed  Google Scholar 

  13. Dieckmann KP, Loy V. The value of the biopsy of the contralateral testis in patients with testicular germ cell cancer: the recent German experience. APMIS. 1998;106:13–20. discussion 20-13.

    Article  CAS  PubMed  Google Scholar 

  14. Eisenberg ML, Li S, Brooks JD, Cullen MR, Baker LC. Increased risk of cancer in infertile men: analysis of U.S. claims data. J Urol. 2015;193:1596–601.

    Article  PubMed  Google Scholar 

  15. Magoha GA. Testicular cancer in Nigerians. East Afr Med J. 1995;72:554–6.

    CAS  PubMed  Google Scholar 

  16. Opot EN, Magoha GA. Testicular cancer at Kenyatta National Hospital, Nairobi. East Afr Med J. 2000;77:80–5.

    CAS  PubMed  Google Scholar 

  17. Mitchell RT, Camacho-Moll E, Macdonald J, Anderson RA, Kelnar CJ, et al. Intratubular germ cell neoplasia of the human testis: heterogeneous protein expression and relation to invasive potential. Mod Pathol. 2014;27:1255–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoei-Hansen CE, Rajpert-De Meyts E, Daugaard G, Skakkebaek NE. Carcinoma in situ testis, the progenitor of testicular germ cell tumours: a clinical review. Ann Oncol. 2005;16:863–8.

    Article  CAS  PubMed  Google Scholar 

  19. Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Adv Exp Med Biol. 2007;604:17–46.

    Article  PubMed  Google Scholar 

  20. Spiekermann M, Dieckmann KP, Balks T, Bullerdiek J, Belge G. Is relative quantification dispensable for the measurement of microRNAs as serum biomarkers in germ cell tumors? Anticancer Res. 2015;35:117–21.

    CAS  PubMed  Google Scholar 

  21. Bezan A, Gerger A, Pichler M. MicroRNAs in testicular cancer: implications for pathogenesis, diagnosis, prognosis and therapy. Anticancer Res. 2014;34:2709–13.

    CAS  PubMed  Google Scholar 

  22. McIver SC, Roman SD, Nixon B, McLaughlin EA. miRNA and mammalian male germ cells. Hum Reprod Update. 2012;18:44–59.

    Article  CAS  PubMed  Google Scholar 

  23. McIver SC, Roman SD, Nixon B, Loveland KL, McLaughlin EA. The rise of testicular germ cell tumours: the search for causes, risk factors and novel therapeutic targets. F1000Res. 2013;2:55.

    PubMed  PubMed Central  Google Scholar 

  24. McIver SC, Stanger SJ, Santarelli DM, Roman SD, Nixon B, et al. A unique combination of male germ cell miRNAs coordinates gonocyte differentiation. PLoS One. 2012;7:e35553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Di Vizio D, Cito L, Boccia A, Chieffi P, Insabato L, et al. Loss of the tumor suppressor gene PTEN marks the transition from intratubular germ cell neoplasias (ITGCN) to invasive germ cell tumors. Oncogene. 2005;24:1882–94.

    Article  PubMed  CAS  Google Scholar 

  26. Gilbert DC, McIntyre A, Summersgill B, Missiaglia E, Goddard NC, et al. Minimum regions of genomic imbalance in stage I testicular embryonal carcinoma and association of 22q loss with relapse. Genes Chromosomes Cancer. 2011;50:186–95.

    Article  CAS  PubMed  Google Scholar 

  27. Freemantle SJ, Vaseva AV, Ewings KE, Bee T, Krizan KA, et al. Repression of cyclin D1 as a target for germ cell tumors. Int J Oncol. 2007;30:333–40.

    CAS  PubMed  Google Scholar 

  28. Gillis AJ, Stoop HJ, Hersmus R, Oosterhuis JW, Sun Y, et al. High-throughput microRNAome analysis in human germ cell tumours. J Pathol. 2007;213:319–28.

    Article  CAS  PubMed  Google Scholar 

  29. Syring I, Bartels J, Holdenrieder S, Kristiansen G, Muller SC, et al. Circulating serum miRNA (miR-367-3p, miR-371a-3p, miR-372-3p and miR-373-3p) as biomarkers in patients with testicular germ cell cancer. J Urol. 2015;193:331–7.

    Article  CAS  PubMed  Google Scholar 

  30. Novotny GW, Belling KC, Bramsen JB, Nielsen JE, Bork-Jensen J, et al. MicroRNA expression profiling of carcinoma in situ cells of the testis. Endocr Relat Cancer. 2012;19:365–79.

    Article  CAS  PubMed  Google Scholar 

  31. Zabolotneva AA, Zhavoronkov AA, Shegay PV, Gaifullin NM, Alekseev BY, et al. A systematic experimental evaluation of microRNA markers of human bladder cancer. Front Genet. 2013;4:247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Puerta-Gil P, Garcia-Baquero R, Jia AY, Ocana S, Alvarez-Mugica M, et al. miR-143, miR-222, and miR-452 are useful as tumor stratification and noninvasive diagnostic biomarkers for bladder cancer. Am J Pathol. 2012;180:1808–15.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang DQ, Zhou CK, Jiang XW, Chen J, Shi BK. Increased expression of miR-222 is associated with poor prognosis in bladder cancer. World J Surg Oncol. 2014;12:241.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang DZ, Lau KM, Chan ES, Wang G, Szeto CC, et al. Cell-free urinary microRNA-99a and microRNA-125b are diagnostic markers for the non-invasive screening of bladder cancer. PLoS One. 2014;9:e100793.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Xu X, Chen H, Lin Y, Hu Z, Mao Y, et al. MicroRNA-409-3p inhibits migration and invasion of bladder cancer cells via targeting c-Met. Mol Cells. 2013;36:62–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Feng Y, Liu J, Kang Y, He Y, Liang B, et al. miR-19a acts as an oncogenic microRNA and is up-regulated in bladder cancer. J Exp Clin Cancer Res. 2014;33:67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ratert N, Meyer HA, Jung M, Lioudmer P, Mollenkopf HJ, et al. miRNA profiling identifies candidate mirnas for bladder cancer diagnosis and clinical outcome. J Mol Diagn. 2013;15:695–705.

    Article  CAS  PubMed  Google Scholar 

  38. Mahdavinezhad A, Mousavibahar SH, Poorolajal J, Yadegarazari R, Jafari M, et al. Association between tissue miR-141, miR-200c and miR-30b and bladder cancer: a matched case-control study. Urol J. 2015;12:2010–3.

    PubMed  Google Scholar 

  39. Kim SM, Kang HW, Kim WT, Kim YJ, Yun SJ, et al. Cell-free microRNA-214 from urine as a biomarker for non-muscle-invasive bladder cancer. Korean J Urol. 2013;54:791–6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dyrskjot L, Ostenfeld MS, Bramsen JB, Silahtaroglu AN, Lamy P, et al. Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res. 2009;69:4851–60.

    Article  CAS  PubMed  Google Scholar 

  41. Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer. 2009;125:345–52.

    Article  CAS  PubMed  Google Scholar 

  42. Yamada Y, Enokida H, Kojima S, Kawakami K, Chiyomaru T, et al. MiR-96 and miR-183 detection in urine serve as potential tumor markers of urothelial carcinoma: correlation with stage and grade, and comparison with urinary cytology. Cancer Sci. 2011;102:522–9.

    Article  CAS  PubMed  Google Scholar 

  43. Wang G, Chan ES, Kwan BC, Li PK, Yip SK, et al. Expression of microRNAs in the urine of patients with bladder cancer. Clin Genitourin Cancer. 2012;10:106–13.

    Article  PubMed  Google Scholar 

  44. Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  45. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118:3030–44.

    Article  CAS  PubMed  Google Scholar 

  46. Bedwani R, Renganathan E, El Kwhsky F, Braga C, Abu Seif HH, et al. Schistosomiasis and the risk of bladder cancer in Alexandria, Egypt. Br J Cancer. 1998;77:1186–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rosin MP, Saad el Din Zaki S, Ward AJ, Anwar WA. Involvement of inflammatory reactions and elevated cell proliferation in the development of bladder cancer in schistosomiasis patients. Mutat Res. 1994;305:283–92.

    Article  CAS  PubMed  Google Scholar 

  48. Weitzman SA, Stossel TP. Mutation caused by human phagocytes. Science. 1981;212:546–7.

    Article  CAS  PubMed  Google Scholar 

  49. Weitberg AB. Effect of combinations of antioxidants on phagocyte-induced sister-chromatid exchanges. Mutat Res. 1989;224:1–4.

    Article  CAS  PubMed  Google Scholar 

  50. O’Brien PJ. Radical formation during the peroxidase catalyzed metabolism of carcinogens and xenobiotics: the reactivity of these radicals with GSH, DNA, and unsaturated lipid. Free Radic Biol Med. 1988;4:169–83.

    Article  PubMed  Google Scholar 

  51. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, et al. A review of human carcinogens Part B: biological agents. Lancet Oncol. 2009;10:321–2.

    Article  PubMed  Google Scholar 

  52. Galsky MD, Iasonos A, Mironov S, Scattergood J, Donat SM, et al. Prospective trial of ifosfamide, paclitaxel, and cisplatin in patients with advanced non-transitional cell carcinoma of the urothelial tract. Urology. 2007;69:255–9.

    Article  PubMed  Google Scholar 

  53. Fortuny J, Kogevinas M, Chang-Claude J, Gonzalez CA, Hours M, et al. Tobacco, occupation and non-transitional-cell carcinoma of the bladder: an international case-control study. Int J Cancer. 1999;80:44–6.

    Article  CAS  PubMed  Google Scholar 

  54. Vakar-Lopez F, Abrams J. Basaloid squamous cell carcinoma occurring in the urinary bladder. Arch Pathol Lab Med. 2000;124:455–9.

    CAS  PubMed  Google Scholar 

  55. Roy S, Smith MA, Cieply KM, Acquafondata MB, Parwani AV. Primary bladder adenocarcinoma versus metastatic colorectal adenocarcinoma: a persisting diagnostic challenge. Diagn Pathol. 2012;7:151.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Urquidi V, Rosser CJ, Goodison S. Molecular diagnostic trends in urological cancer: biomarkers for non-invasive diagnosis. Curr Med Chem. 2012;19:3653–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yun SJ, Jeong P, Kim WT, Kim TH, Lee YS, et al. Cell-free microRNAs in urine as diagnostic and prognostic biomarkers of bladder cancer. Int J Oncol. 2012;41:1871–8.

    CAS  PubMed  Google Scholar 

  58. Di Martino MT, Gulla A, Gallo Cantafio ME, Altomare E, Amodio N, et al. In vitro and in vivo activity of a novel locked nucleic acid (LNA)-inhibitor-miR-221 against multiple myeloma cells. PLoS One. 2014;9:e89659.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Di Martino MT, Gulla A, Cantafio ME, Lionetti M, Leone E, et al. In vitro and in vivo anti-tumor activity of miR-221/222 inhibitors in multiple myeloma. Oncotarget. 2013;4:242–55.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gulla A, Di Martino MT, Gallo Cantafio ME, Morelli E, Amodio N, et al. A 13 mer LNA-i-miR-221 inhibitor restores drug sensitivity in melphalan-refractory multiple myeloma cells. Clin Cancer Res. 2016;22:1222.

    Article  CAS  PubMed  Google Scholar 

  61. Felli N, Fontana L, Pelosi E, Botta R, Bonci D, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A. 2005;102:18081–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nassirpour R, Mehta PP, Baxi SM, Yin MJ. miR-221 promotes tumorigenesis in human triple negative breast cancer cells. PLoS One. 2013;8:e62170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stinson S, Lackner MR, Adai AT, Yu N, Kim HJ, et al. TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci Signal. 2011;4:ra41.

    Article  PubMed  Google Scholar 

  64. Howe EN, Cochrane DR, Richer JK. The miR-200 and miR-221/222 microRNA families: opposing effects on epithelial identity. J Mammary Gland Biol Neoplasia. 2012;17:65–77.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene. 2008;27:5651–61.

    Article  CAS  PubMed  Google Scholar 

  66. Amodio N, Rossi M, Raimondi L, Pitari MR, Botta C, et al. miR-29 s: a family of epi-miRNAs with therapeutic implications in hematologic malignancies. Oncotarget. 2015;6:12837–61.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Amodio N, Di Martino MT, Neri A, Tagliaferri P, Tassone P. Non-coding RNA: a novel opportunity for the personalized treatment of multiple myeloma. Expert Opin Biol Ther. 2013;13 Suppl 1:S125–37.

    Article  CAS  PubMed  Google Scholar 

  68. Amodio N, Bellizzi D, Leotta M, Raimondi L, Biamonte L, et al. miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells. Cell Cycle. 2013;12:3650–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Calderaro J, Rebouissou S, de Koning L, Masmoudi A, Herault A, et al. PI3K/AKT pathway activation in bladder carcinogenesis. Int J Cancer. 2014;134:1776–84.

    Article  CAS  PubMed  Google Scholar 

  70. Neuzillet Y, Paoletti X, Ouerhani S, Mongiat-Artus P, Soliman H, et al. A meta-analysis of the relationship between FGFR3 and TP53 mutations in bladder cancer. PLoS One. 2012;7:e48993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Billerey C, Chopin D, Aubriot-Lorton MH, Ricol D, Gil Diez de Medina S, et al. Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. Am J Pathol. 2001;158:1955–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Knowles MA. Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese? Carcinogenesis. 2006;27:361–73.

    Article  CAS  PubMed  Google Scholar 

  73. Kent OA, Chivukula RR, Mullendore M, Wentzel EA, Feldmann G, et al. Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev. 2010;24:2754–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fendler A, Stephan C, Yousef GM, Jung K. MicroRNAs as regulators of signal transduction in urological tumors. Clin Chem. 2011;57:954–68.

    Article  CAS  PubMed  Google Scholar 

  75. Hansel DE, Platt E, Orloff M, Harwalker J, Sethu S, et al. Mammalian target of rapamycin (mTOR) regulates cellular proliferation and tumor growth in urothelial carcinoma. Am J Pathol. 2010;176:3062–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Morelli E, Leone E, Cantafio ME, Di Martino MT, Amodio N, et al. Selective targeting of IRF4 by synthetic microRNA-125b-5p mimics induces anti-multiple myeloma activity in vitro and in vivo. Leukemia. 2015;29:2173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu Q, Yang Z, An Y, Hu H, Yin J, et al. MiR-19a/b modulate the metastasis of gastric cancer cells by targeting the tumour suppressor MXD1. Cell Death Dis. 2014;5:e1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Olive V, Bennett MJ, Walker JC, Ma C, Jiang I, et al. miR-19 is a key oncogenic component of mir-17-92. Genes Dev. 2009;23:2839–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ye H, Liu X, Lv M, Wu Y, Kuang S, et al. MicroRNA and transcription factor co-regulatory network analysis reveals miR-19 inhibits CYLD in T-cell acute lymphoblastic leukemia. Nucleic Acids Res. 2012;40:5201–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Scheffer AR, Holdenrieder S, Kristiansen G, von Ruecker A, Muller SC, et al. Circulating microRNAs in serum: novel biomarkers for patients with bladder cancer? World J Urol. 2014;32:353–8.

    Article  CAS  PubMed  Google Scholar 

  81. Lee H, Jun SY, Lee YS, Lee HJ, Lee WS, et al. Expression of miRNAs and ZEB1 and ZEB2 correlates with histopathological grade in papillary urothelial tumors of the urinary bladder. Virchows Arch. 2014;464:213–20.

    Article  CAS  PubMed  Google Scholar 

  82. Xie P, Xu F, Cheng W, Gao J, Zhang Z, et al. Infiltration related miRNAs in bladder urothelial carcinoma. J Huazhong Univ Sci Technolog Med Sci. 2012;32:576–80.

    Article  CAS  PubMed  Google Scholar 

  83. Wszolek MF, Rieger-Christ KM, Kenney PA, Gould JJ, Silva Neto B, et al. A MicroRNA expression profile defining the invasive bladder tumor phenotype. Urol Oncol. 2011;29(794–801):e791.

    Google Scholar 

  84. Song T, Xia W, Shao N, Zhang X, Wang C, et al. Differential miRNA expression profiles in bladder urothelial carcinomas. Asian Pac J Cancer Prev. 2010;11:905–11.

    PubMed  Google Scholar 

  85. Raimondi L, Amodio N, Di Martino MT, Altomare E, Leotta M, et al. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget. 2014;5:3039–54.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Adam L, Zhong M, Choi W, Qi W, Nicoloso M, et al. miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res. 2009;15:5060–72.

    Article  CAS  PubMed  Google Scholar 

  87. Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, et al. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 2010;101:293–9.

    Article  CAS  PubMed  Google Scholar 

  88. Cannistraci A, Di Pace AL, De Maria R, Bonci D. MicroRNA as new tools for prostate cancer risk assessment and therapeutic intervention: results from clinical data set and patients’ samples. Biomed Res Int. 2014;2014:146170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103(7):2257–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim WT, Kim WJ. MicroRNAs in prostate cancer. Prostate Int. 2013;1:3–9.

    Article  PubMed  Google Scholar 

  91. Wan Y, Zeng ZC, Xi M, Wan S, Hua W, et al. Dysregulated microRNA-224/apelin axis associated with aggressive progression and poor prognosis in patients with prostate cancer. Hum Pathol. 2015;46:295–303.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang HL, Qin XJ, Cao DL, Zhu Y, Yao XD, et al. An elevated serum miR-141 level in patients with bone-metastatic prostate cancer is correlated with more bone lesions. Asian J Androl. 2013;15:231–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wen J, Li R, Wen X, Chou G, Lu J, et al. Dysregulation of cell cycle related genes and microRNAs distinguish the low- from high-risk of prostate cancer. Diagn Pathol. 2014;9:156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Bryant RJ, Pawlowski T, Catto JW, Marsden G, Vessella RL, et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 2012;106:768–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang L, Yu J, Xu J, Zheng C, Li X, et al. The analysis of microRNA-34 family expression in human cancer studies comparing cancer tissues with corresponding pericarcinous tissues. Gene. 2015;554:1–8.

    Article  CAS  PubMed  Google Scholar 

  96. Cosco D, Cilurzo F, Maiuolo J, Federico C, Di Martino MT, et al. Delivery of miR-34a by chitosan/PLGA nanoplexes for the anticancer treatment of multiple myeloma. Sci Rep. 2015;5:17579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, et al. Mir-34: a new weapon against cancer? Mol Ther Nucleic Acids. 2014;3:e194.

    Article  CAS  PubMed  Google Scholar 

  98. Scognamiglio I, Di Martino MT, Campani V, Virgilio A, Galeone A, et al. Transferrin-conjugated SNALPs encapsulating 2′-O-methylated miR-34a for the treatment of multiple myeloma. Biomed Res Int. 2014;2014:217365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Di Martino MT, Campani V, Misso G, Gallo Cantafio ME, Gulla A, et al. In vivo activity of miR-34a mimics delivered by stable nucleic acid lipid particles (SNALPs) against multiple myeloma. PLoS One. 2014;9:e90005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Di Martino MT, Leone E, Amodio N, Foresta U, Lionetti M, et al. Synthetic miR-34a mimics as a novel therapeutic agent for multiple myeloma: in vitro and in vivo evidence. Clin Cancer Res. 2012;18:6260–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Marra M, Salzano G, Leonetti C, Tassone P, Scarsella M, et al. Nanotechnologies to use bisphosphonates as potent anticancer agents: the effects of zoledronic acid encapsulated into liposomes. Nanomedicine. 2011;7:955–64.

    CAS  PubMed  Google Scholar 

  102. Marra M, Salzano G, Leonetti C, Porru M, Franco R, et al. New self-assembly nanoparticles and stealth liposomes for the delivery of zoledronic acid: a comparative study. Biotechnol Adv. 2012;30:302–9.

    Article  CAS  PubMed  Google Scholar 

  103. Li M, Wang Y, Song Y, Bu R, Yin B, et al. MicroRNAs in renal cell carcinoma: a systematic review of clinical implications (Review). Oncol Rep. 2015;33:1571–8.

    PubMed  PubMed Central  Google Scholar 

  104. Yang FQ, Zhang HM, Chen SJ, Yan Y, Zheng JH. MiR-506 is down-regulated in clear cell renal cell carcinoma and inhibits cell growth and metastasis via targeting FLOT1. PLoS One. 2015;10:e0120258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Junker K, Ficarra V, Kwon ED, Leibovich BC, Thompson RH, et al. Potential role of genetic markers in the management of kidney cancer. Eur Urol. 2013;63:333–40.

    Article  CAS  PubMed  Google Scholar 

  106. Zhao X, Zhao Z, Xu W, Hou J, Du X. Down-regulation of miR-497 is associated with poor prognosis in renal cancer. Int J Clin Exp Pathol. 2015;8:758–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ma L, Qu L. The function of microRNAs in renal development and pathophysiology. J Genet Genomics. 2013;40:143–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Caraglia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Caraglia, M., Alaia, C., Grimaldi, A., Boccellino, M., Quagliuolo, L. (2016). miRNA as Prognostic and Therapeutic Targets in Tumor of Male Urogenital Tract. In: Chatterjee, M. (eds) Molecular Targets and Strategies in Cancer Prevention. Springer, Cham. https://doi.org/10.1007/978-3-319-31254-5_7

Download citation

Publish with us

Policies and ethics