Working Memory and Strategy Instruction in Children with Learning Disabilities

  • H. Lee SwansonEmail author
Part of the Literacy Studies book series (LITS, volume 13)


The purpose of this chapter is to review some of the instructional research completed in our lab related to improving memory performance in children with reading and/or math disabilities. We review studies that focus on (1) the effects of strategy knowledge and strategy training on the working memory (WM) performance as a function of dynamic testing conditions, (2) transfer effects as a function of direct training on WM tasks, and (3) the effects of strategy training on problem solving and transfer measures as a function of variations in working memory capacity.


Reading disabilities Working memory Strategies Strategy knowledge 


  1. Anderson, J. R. (1987). Skill acquisition: Compilation of weak-method problem solving. Psychological Review, 94, 192–210. doi: 10.1037//0033-295X.94.2.192.CrossRefGoogle Scholar
  2. Baddeley, A. D., & Logie, R. H. (1999). The multiple-component model. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 28–61). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  3. Censabella, S., & Noël, M. (2008). The inhibition capacities of children with mathematical disabilities. Child Neuropsychology, 14(1), 1–20. doi: 10.1080/09297040601052318.CrossRefGoogle Scholar
  4. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  5. Cook, J. L., & Rieser, J. J. (2005). Finding the critical facts: Children’s visual scan patterns when solving story problems that contain irrelevant information. Journal of Educational Psychology, 97(2), 224–234. doi: 10.1037/0022-0663.97.2.224.CrossRefGoogle Scholar
  6. Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450–466. doi: 10.1016/S0022-5371(80)90312-6.CrossRefGoogle Scholar
  7. Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. (1999). Working memory, short-term memory, and general fluid intelligence: A latent variable approach. Journal of Experimental Psychology General, 128, 309–331. doi: 10.1037//0096-3445.128.3.309.CrossRefGoogle Scholar
  8. Fuchs, L. S., Schumacher, R. F., Sterba, S. K., Long, J., Namkung, J., Malone, A., et al. (2014). Does working memory moderate the effects of fraction intervention? An aptitude–treatment interaction. Journal of Educational Psychology, 106(2), 499–514. doi: 10.1037/a0034341.CrossRefGoogle Scholar
  9. Geary, D. C. (2013). Learning disabilities in mathematics: Recent advances. In H. L. Swanson, K. Harris, & S. Graham (Eds.), Handbook of learning disabilities (2nd ed., pp. 239–256). New York, NY: Guilford.Google Scholar
  10. Gersten, R., Chard, D. J., Jayanthi, M., Baker, S. K., Morphy, P., & Flojo, J. (2009). Mathematics instruction for students with learning disabilities: A meta-analysis of instructional components. Review of Educational Research, 79(3), 1202–1242. doi: 10.3102/0034654309334431.CrossRefGoogle Scholar
  11. Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Developmental Science, 12(4), 9–15. doi: 10.1111/j.1467-7687.2009.00848.x.CrossRefGoogle Scholar
  12. Kintsch, W., & Greeno, J. G. (1985). Understanding and solving word arithmetic problems. Psychological Review, 92, 109–129.CrossRefGoogle Scholar
  13. Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlstrom, K., et al. (2005). Computerized training of working memory in children with ADHD – A randomized controlled trial. Journal of the American Academy of Child & Adolescent Psychiatry, 44(2), 177–186.CrossRefGoogle Scholar
  14. Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology, 24(6), 781–791.CrossRefGoogle Scholar
  15. Marzocchi, G. M., Lucangeli, D., De Meo, T., Fini, F., & Cornoldi, C. (2002). The disturbing effect of irrelevant information on arithmetic problem solving in inattentive children. Developmental Neuropsychology, 21(1), 73–92. doi: 10.1207/S15326942DN2101_4.CrossRefGoogle Scholar
  16. Mayer, R. E., & Hegarty, M. (1996). The process of understanding mathematical problem solving. In R. J. Sternberg & T. Ben-Zeev (Eds.), The nature of mathematical thinking (pp. 29–54). Mahwah, NJ: Erlbaum.Google Scholar
  17. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., & Howerter, A. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100. doi: 10.1006/cogp.1999.0734.CrossRefGoogle Scholar
  18. Montague, M., Krawec, J., Enders, C., & Dietz, S. (2014). The effects of cognitive strategy instruction on math problem solving of middle-school students of varying ability. Journal of Educational Psychology, 106(2), 469–481. doi: 10.1037/a0035176.CrossRefGoogle Scholar
  19. O’Shaughnessy, T. E., & Swanson, H. L. (1998). Do immediate memory deficits in students with learning disabilities in reading reflect a developmental lag or deficit?: A selective meta-analysis of the literature. Learning Disability Quarterly, 21(2), 123–148. doi: 10.2307/1511341.CrossRefGoogle Scholar
  20. Passolunghi, M. C., Cornoldi, C., & De Liberto, S. (2001). Working memory and intrusions of irrelevant information in a group of specific poor problem solvers. Memory & Cognition, 27, 779–790.CrossRefGoogle Scholar
  21. Siegel, L. S., & Ryan, E. B. (1989). The development of working memory in normally achieving and subtypes of learning disabled. Child Development, 60, 973–980. doi: 10.1111/j.1467-8624.1989.tb03528.x.CrossRefGoogle Scholar
  22. Swanson, H. L. (1992). Generality and modifiability of working memory among skilled and less skilled readers. Journal of Educational Psychology, 84(4), 473–488. doi: 10.1037/0022-0663.84.4.473.CrossRefGoogle Scholar
  23. Swanson, H. L. (1993). Working memory in learning disability subgroups. Journal of Experimental Child Psychology, 56(1), 87–114. doi: 10.1006/jecp.1993.1027.CrossRefGoogle Scholar
  24. Swanson, H. L. (1995). S-cognitive processing test (S-CPT): A dynamic assessment measure. Austin, TX: PRO-ED.Google Scholar
  25. Swanson, H. L. (1999). Reading comprehension and working memory in learning-disabled readers: Is the phonological loop more important than the executive system? Journal of Experimental Child Psychology, 72(1), 1–31. doi: 10.1006/jecp.1998.2477.CrossRefGoogle Scholar
  26. Swanson, H. L. (2011). Dynamic testing, working memory, and reading comprehension growth in children with reading disabilities. Journal of Learning Disabilities, 44(4), 358–371. doi: 10.1177/0022219411407866.CrossRefGoogle Scholar
  27. Swanson, H. L. (2003). Age-related differences in learning disabled and skilled reader’s working memory. Journal of Experimental Child Psychology, 85, 1–31.CrossRefGoogle Scholar
  28. Swanson, H. L. (2013). Abbreviated test of working memory. Washington, DC: American Psychological Association and PyscTESTS.Google Scholar
  29. Swanson, H. L. (2014). Does cognitive strategy training on word problems compensate for working memory capacity in children with math difficulties? Journal of Educational Psychology, 106(3), 831–848. doi: 10.1037/a0035838.CrossRefGoogle Scholar
  30. Swanson, H. L., & Ashbaker, M. H. (2000). Working memory, short-term memory, speech rate, word recognition and reading comprehension in learning disabled readers: Does the executive system have a role? Intelligence, 28(1), 1–30. doi: 10.1016/S0160-2896(99)00025-2.CrossRefGoogle Scholar
  31. Swanson, H. L., Cooney, J. B., & Brock, S. (1993). The influence of working memory and classification ability on children’s word problem solution. Journal of Experimental Child Psychology, 55(3), 374–395. doi: 10.1006/jecp.1993.1021.CrossRefGoogle Scholar
  32. Swanson, H. L., Jerman, O., & Zheng, X. (2008). Growth in working memory and mathematical problem solving in children at risk and not at risk for serious math difficulties. Journal of Educational Psychology, 100(2), 343–379. doi: 10.1037/0022-0663.100.2.343.CrossRefGoogle Scholar
  33. Swanson, H. L., Kehler, P., & Jerman, O. (2010). Working memory, strategy knowledge, and strategy instruction in children with reading disabilities. Journal of Learning Disabilities, 43, 24–47.Google Scholar
  34. Swanson, H. L., Lussier, C., & Orosco, M. (2013). Effects of cognitive strategy interventions and cognitive moderators on word problem solving in children at risk for problem solving difficulties. Learning Disabilities Research & Practice, 28(4), 170–183. doi: 10.1111/ldrp.12019.CrossRefGoogle Scholar
  35. Swanson, H. L., Moran, A. S., Bocian, K., Lussier, C., & Zheng, X. (2013). Generative strategies, working memory, and word problem solving accuracy in children at risk for math disabilities. Learning Disability Quarterly, 36(4), 203–214. doi: 10.1177/0731948712464034.CrossRefGoogle Scholar
  36. Swanson, H. L., Moran, A., Lussier, C., & Fung, W. (2014). The effect of explicit and direct generative strategy training and working memory on word problem-solving accuracy in children at risk for math difficulties. Learning Disability Quarterly, 37(2), 111–122. doi: 10.1177/0731948713507264.CrossRefGoogle Scholar
  37. Swanson, H. L., & Stomel, D. (2012). Learning disabilities and memory. Learning about learning disabilities (4th ed., pp. 27–57). San Diego, CA: Elsevier Academic Press. doi: 10.1016/B978-0-12-388409-1.00002-3.CrossRefGoogle Scholar
  38. Swanson, H. L., & Siegel, L. (2001a). Elaborating on working memory and learning disabilities: A reply to commentators. Issues in Education: Contributions from Educational Psychology, 7, 107–129.Google Scholar
  39. Swanson, H. L., & Siegel, L. (2001b). Learning disabilities as a working memory deficit. Issues in Education: Contributions from Educational Psychology, 7, 1–48.Google Scholar
  40. Swanson, H. L., & Zheng, X. (2013). Memory difficulties in children and adults with learning disabilities. In H. L. Swanson, K. Harris, & S. Graham (Eds.), Handbook of learning disabilities (2nd ed., pp. 214–238). New York, NY: Guilford Press.Google Scholar
  41. Sweller, J. (1988). Cognitive load during problem solving: Effects of learning. Cognitive Science, 12, 257–285. doi: 10.1016/0364-0213(88)90023-7.CrossRefGoogle Scholar
  42. Sweller, J. (2005). Implications of cognitive load theory for multimedia learning. In R. Mayer (Ed.), Cambridge handbook of multimedia learning (pp. 19–30). New York, NY: Cambridge University Press. doi: 10.1017/CBO9780511816819.003.CrossRefGoogle Scholar
  43. Turley-Ames, K. J., & Whitfield, M. (2003). Strategy training and working memory performance. Journal of Memory and Language, 49, 446–468. doi: 10.1016/S0749-596X(03)00095-0.CrossRefGoogle Scholar
  44. Unsworth, N. (2010). Interference control, working memory capacity, and cognitive abilities: A latent variable analysis. Intelligence, 38(2), 255–267. doi: 10.1016/j.intell.2009.12.003.CrossRefGoogle Scholar
  45. Unsworth, N., & Engle, R. W. (2007). On the division of short-term memory and working memory: An examination of simple and complex span and their relation to higher order abilities. Psychological Bulletin, 133, 1038–1066. doi: 10.1037/0033-2909.133.6.1038.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Education PsychologyUniversity of California-RiversideRiversideUSA

Personalised recommendations