Skip to main content

Monolithic SC DC–DC Toward Even Higher Voltage Conversion Ratios

  • Chapter
  • First Online:
Book cover High-Ratio Voltage Conversion in CMOS for Efficient Mains-Connected Standby

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 750 Accesses

Abstract

This chapter investigates the feasibility to achieve higher voltage conversion ratios in fully integrated DC–DC converter solutions. DC–DC conversion, however, is a very large playing field in the world of power electronics and the attention in the further discussion is focused on monolithically integrated DC–DC conversion. Consequently, the impact of CMOS process technology will be of paramount importance. Even when the scope is directed at high-ratio integrated DC–DC voltage conversion, as hinted toward by the chapter title, many implementation options still exist. To further identify the research region of interest, this chapter will study the switched-capacitor DC–DC approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Andersen, F. Krismer, J. Kolar, T. Toifl, C. Menolfi, L. Kull, T. Morf, M. Kossel, M. Brandli, P. Buchmann, P. Francese, A 4.6W/mm2 power density 86% efficiency on-chip switched capacitor DC-DC converter in 32 nm SOI CMOS, in 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2013), pp. 692–699

    Google Scholar 

  2. T. Andersen, F. Krismer, J. Kolar, T. Toifl, C. Menolfi, L. Kull, T. Morf, M. Kossel, M. Brandli, P. Buchmann, P. Francese, A deep trench capacitor based 2:1 and 3:2 reconfigurable on-chip switched capacitor DC-DC converter in 32 nm SOI CMOS, in 2014 Twenty-Ninth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2014), pp. 1448–1455

    Google Scholar 

  3. A.-J. Annema, G.J.G.M. Geelen, P.C. de Jong, 5.5-V I/O in a 2.5-V 0.25 μm CMOS technology. IEEE J. Solid State Circuits 36(3), 528–538 (2001)

    Google Scholar 

  4. D. El-Damak, S. Bandyopadhyay, A. Chandrakasan, A 93% efficiency reconfigurable switched-capacitor DC-DC converter using on-chip ferroelectric capacitors, in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2013), pp. 374–375

    Google Scholar 

  5. R. Karadi, Synthesis of switched-capacitor power converters: An iterative algorithm, in 2015 IEEE 16th Workshop on Control and Modeling for Power Electronics (COMPEL) (2015), pp. 1–4

    Google Scholar 

  6. H.-P. Le, M. Seeman, S.R. Sanders, V. Sathe, S. Naffziger, E. Alon, A 32 nm fully integrated reconfigurable switched-capacitor DC-DC converter delivering 0.55W/mm2 at 81% efficiency, in Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2010), pp. 210–211

    Google Scholar 

  7. G. Maderbacher, T. Jackum, W. Pribyl, C. Sandner, Output stage topologies of DC-DC buck converters operating up to 5 V supply voltage in 65 nm CMOS, in 2011 7th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (2011), pp. 105–108

    Google Scholar 

  8. M.S. Makowski, D. Maksimovic, Performance limits of switched-capacitor DC-DC vonverters, in Proceedings of IEEE Power Electronics Specialists Conference (PESC), vol. 2 (1995), pp. 1215–1221

    Google Scholar 

  9. H. Meyvaert, T. Van Breussegem, M. Steyaert, A monolithic 0.77 W/mm2 power dense capacitive DC-DC step-down converter in 90 nm Bulk CMOS, in 2011 Proceedings of the European Solid-State Circuits Conference (ESSCIRC) (2011), pp. 483–486

    Google Scholar 

  10. H. Meyvaert, T. Van Breussegem, M. Steyaert, A 1.65 W fully integrated 90 nm bulk cmos capacitive DC-dc converter with intrinsic charge recycling. IEEE Trans. Power Electron. 28(9), 4327–4334 (2013)

    Google Scholar 

  11. H. Meyvaert, A. Sarafianos, N. Butzen, M. Steyaert, Monolithic switched-capacitor DC-DC towards high voltage conversion ratios, in 2014 IEEE 15th Workshop on Control and Modeling for Power Electronics (COMPEL) (2014), pp. 1–5

    Google Scholar 

  12. V. Ng, S. Sanders, A 92%-efficiency wide-input-voltage-range switched-capacitor dc-dc converter, in Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2012), pp. 282–284

    Google Scholar 

  13. V.W. Ng, M.D. Seeman, S.R. Sanders, Minimum PCB footprint point-of-load DC-DC converter realized with switched-capacitor architecture, in Proceedings of IEEE Energy Conversion Congress and Exposition (ECCE) (2009), pp. 1575–1581

    Google Scholar 

  14. Y. Ramadass, A. Chandrakasan, Energy processing circuits for low-power applications, Ph.D. thesis, Massachusetts Institute of Technology (2009)

    Google Scholar 

  15. J. Rodriguez, K. Remack, J. Gertas, L. Wang, C. Zhou, K. Boku, J. Rodriguez-Latorre, K. Udayakumar, S. Summerfelt, T. Moise, D. Kim, J. Groat, J. Eliason, M. Depner, F. Chu, Reliability of Ferroelectric Random Access memory embedded within 130 nm CMOS, in 2010 IEEE International Reliability Physics Symposium (IRPS) (2010), pp. 750–758

    Google Scholar 

  16. L. Salem, P. Mercier, A 45-ratio recursively sliced series-parallel switched-capacitor DC-DC converter achieving 86% efficiency, in 2014 IEEE Proceedings of the Custom Integrated Circuits Conference (CICC) (2014), pp. 1–4

    Google Scholar 

  17. L. Salem, P. Mercier, An 85%-efficiency fully integrated 15-ratio recursive switched-capacitor DC-DC converter with 0.1-to-2.2 V output voltage range, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2014), pp. 88–89

    Google Scholar 

  18. G. Schrom, P. Hazucha, J.-H. Hahn, V. Kursun, D. Gardner, S. Narendra, T. Karnik, V. De, Feasibility of monolithic and 3D-stacked DC-DC converters for microprocessors in 90 nm technology generation, in Proceedings of the 2004 International Symposium on Low Power Electronics and Design, 2004. ISLPED ‘04 (2004), pp. 263–268

    Google Scholar 

  19. M.D. Seeman, S.R. Sanders, Analysis and optimization of switched-capacitor DC-DC converters. IEEE Trans. Power Electron. 23(2), 841–851 (2008)

    Article  Google Scholar 

  20. M. Seeman, V. Ng, H.-P. Le, M. John, E. Alon, S. Sanders, A comparative analysis of Switched-Capacitor and inductor-based DC-DC conversion technologies, in 2010 IEEE 12th Workshop on Control and Modeling for Power Electronics (COMPEL) (2010), pp. 1–7

    Google Scholar 

  21. B. Serneels, T. Piessens, M. Stepert, W. Dehaene, A high-voltage output driver in a standard 2.5 V 0.25 μm CMOS technology, in 2004 IEEE International Proceedings of Digest of Technical Papers Solid-State Circuits Conference ISSCC (2004), pp. 146–518

    Google Scholar 

  22. B. Serneels, T. Piessens, M. Steyaert, W. Dehaene, A high-voltage output driver in a 2.5-V 0.25-μm CMOS technology. IEEE J. Solid State Circuits 40(3), 576–583 (2005)

    Google Scholar 

  23. B. Serneels, E. Geukens, B. De Muer, T. Piessens, A 1.5W 10 V-output Class-D amplifier using a boosted supply from a single 3.3V input in standard 1.8 V/3.3 V 0.18 μm CMOS, in Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2012), pp. 94–96

    Google Scholar 

  24. D. Somasekhar, B. Srinivasan, G. Pandya, F. Hamzaoglu, M. Khellah, T. Karnik, K. Zhang, Multi-phase 1 GHz voltage doubler charge-pump in 32 nm logic process, in 2009 Symposium on VLSI Circuits (2009), pp. 196–197

    Google Scholar 

  25. T. Van Breussegem, M. Steyaert, A 82% efficiency 0.5% ripple 16-phase fully integrated capacitive voltage doubler, in 2009 Symposium on VLSI Circuits (2009), pp. 198–199

    Google Scholar 

  26. T.M. Van Breussegem, M.S.J. Steyaert, Compact low swing gearbox-type integrated capacitive DC/DC converter. Electron. Lett. 46(13), 892–894 (2010)

    Google Scholar 

  27. T. Van Breussegem, M. Wens, J.-M. Redoute, E. Geukens, D. Geys, M. Steyaert, A DMOS integrated 320mW capacitive 12 V to 70 V DC/DC-converter for LIDAR applications, in Proceedings of IEEE Energy Conversion Congress and Exposition ECCE 2009 (2009), pp. 3865–3869

    Google Scholar 

  28. G. Villar Piqué, H. Bergveld, E. Alarcon, Survey and benchmark of fully integrated switching power converters: switched-capacitor versus inductive approach. IEEE Trans. Power Electron. 28(9), 4156–4167 (2013)

    Google Scholar 

  29. G. Wang et al., Scaling deep trench based eDRAM on SOI to 32 nm and Beyond, in 2009 IEEE International Electron Devices Meeting (IEDM) (2009), pp. 259–262

    Google Scholar 

  30. L. Xue, C. Dougherty, R. Bashirullah, 50–100 MHz, 8x step-up DC-dc converters in 130 nm 1.2 V digital CMOS, in 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2011), pp. 892–896

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meyvaert, H., Steyaert, M. (2016). Monolithic SC DC–DC Toward Even Higher Voltage Conversion Ratios. In: High-Ratio Voltage Conversion in CMOS for Efficient Mains-Connected Standby. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-31207-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31207-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31206-4

  • Online ISBN: 978-3-319-31207-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics