Skip to main content

Photoelectrochemical Reactions at Phthalocyanine Electrodes

  • Chapter
  • First Online:
Electrochemistry of N4 Macrocyclic Metal Complexes
  • 837 Accesses

Abstract

Phthalocyanine molecules lend themselves in a very favorable way to drive light-induced charge transfer reactions because of their intense absorption in the visible range, a rather high chemical stability and the ease at which their redox potential can be tuned by means of suitable substituents. A number of unsubstituted and substituted phthalocyanines can be directly used to prepare thin films on conducting substrates by means of different film-forming techniques, e.g., by physical vapor deposition or from solutions. Such films in general show semiconducting characteristics in a number of experiments. Therefore, such films can be used as photoactive electrodes in photoelectrochemical cells. Because of a high probability of nonradiative decay of the excited states in solid phthalocyanines and because of a high concentration of defect states in contacts with electrolytes, however, the efficiency is generally low. Considerably higher efficiencies are obtained if phthalocyanines are molecularly dispersed and bound to a wide-bandgap n-conducting semiconductor like TiO2 or ZnO. Carboxylated or sulfonated phthalocyanines are well suited for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerischer H, Willig F (1976) Reactions of excited dye molecules at electrodes. In: Boschke FL (ed) Physical and chemical applications of dyestuffs (Topics in current chemistry, vol 61, Springer, Berlin-Heidelberg 1976) pp 31–84

    Google Scholar 

  2. Memming R (1996) Semiconductor electrochemistry. Wiley-VCH, Weinheim

    Google Scholar 

  3. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  4. Nozik AJ, Memming R (1996) Physical chemistry of semiconductor-liquid interfaces. J Phys Chem 100:13061–13078

    Article  CAS  Google Scholar 

  5. Hannappel T, Burfeindt B, Storck W, Willig F (1997) Measurement of ultrafast photoinduced electron transfer from chemically anchored Ru-dye molecules into empty electronic states in a colloidal anatase TiO2 film. J Phys Chem B 101:6799–6802

    Article  CAS  Google Scholar 

  6. Grünwald R, Tributsch H (1997) Mechanisms of instability in Ru-based dye sensitization solar cells. J Phys Chem B 101:2564–2575

    Article  Google Scholar 

  7. Dloczik L, Ileperuma O, Lauermann I, Peter LM, Ponomarev EA, Redmond G, Shaw NJ, Uhlendorf I (1997) Dynamic response of dye-sensitized nanocrystalline solar cells: Characterization by intensity-modulated photocurrent spectroscopy. J Phys Chem B 101:10281–10289

    Article  CAS  Google Scholar 

  8. Huang SY, Schlichthörl G, Nozik AJ, Grätzel M, Frank AJ (1997) Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 101:2576–2582

    Article  CAS  Google Scholar 

  9. de Jongh PE, Vanmaekelbergh D (1997) Investigation of the electronic transport properties of nanocrystalline particulate TiO2 electrodes by intensity-modulated photocurrent spectroscopy. J Phys Chem B 101:2716–2722

    Article  Google Scholar 

  10. Solbrand A, Lindström H, Rensmo H, Hagfeldt A, Lindquist S-E, Södergren S (1997) Electron transport in the nanostructured TiO2-electrolyte system studied with time-resolved photocurrents. J Phys Chem B 101:2514–2518

    Article  CAS  Google Scholar 

  11. Hilgendorff M, Sundström V (1998) Dynamics of electron injection and recombination of dye-sensitized TiO2 particles. J Phys Chem B 102:10505–10514

    Article  CAS  Google Scholar 

  12. Ellingson RJ, Asbury JB, Ferrere S, Ghosh HN, Sprague JR, Lian T, Nozik AJ (1998) Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with [Ru(4,4 ‘-dicarboxy-2,2 ‘-bipyridine)(2)(NCS)(2)] by infrared transient absorption. J Phys Chem B 102:6455–6458

    Article  CAS  Google Scholar 

  13. Ghosh HN, Asbury JB, Lian T (1998) Direct observation of ultrafast electron injection from coumarin 343 to TiO2 nanoparticles by femtosecond infrared spectroscopy. J Phys Chem B 102:6482–6486

    Article  CAS  Google Scholar 

  14. Haque SA, Tachibana Y, Klug DR, Durrant JR (1998) Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films under externally applied bias. J Phys Chem B 102:1745–1749

    Article  CAS  Google Scholar 

  15. Willig F (1981) Electrochemistry at the organic molecular crystal/aqueous electrolyte interface. In: Gerischer H, Tobias CW (ed) Advances in electrochemistry and electrochemical engineering. Wiley, New York, pp 1–111

    Google Scholar 

  16. Wöhrle D, Meissner D (1991) Organic Solar Cells. Adv Mater 3:129–138

    Article  Google Scholar 

  17. Wöhrle D, Elbe J, Kreienhoop L, Schnurpfeil G, Tennigkeit B, Hiller S, Schlettwein D (1995) Investigation of n/p junction photovoltaic cells of perylenetetracarboxylic acid diimides and phthalocyanines. J Mater Chem 5:1819–1829

    Article  Google Scholar 

  18. Wöhrle D, Kreienhoop L, Schlettwein D (1996) Phthalocyanines and related macrocycles in organic photovoltaic junctions. In: Leznoff CC, Lever ABP (ed) Phthalocyanines-properties and applications, vol 4. VCH, New York, Weinheim, Cambridge, 1996, pp 219–284

    Google Scholar 

  19. Schlettwein D, Oekermann T, Jaeger NI, Armstrong NR, Wöhrle D (2003) Interfacial trap states in junctions of molecular semiconductors. Chem Phys 285:103–112

    Article  Google Scholar 

  20. Schlettwein D, Hesse K, Gruhn N, Lee PA, Nebesny KW, Armstrong NR (2001) Electronic energy levels in individual molecules, thin films, and organic heterojunctions of substituted phthalocyanines. J Phys Chem B 105:4791–4800

    Article  CAS  Google Scholar 

  21. Minami N, Watanabe T, Fujishima A, Honda K-I (1979) Photoelectrochemical study on copper phthalocyanine films. Ber Bunsenges Phys Chem 83:476–481

    Article  CAS  Google Scholar 

  22. Santerre F, Cote R, Veilleux G, Saint-Jacques RG, Dodelet JP (1996) Highly photoactive molecular semiconductors: Determination of the essential parameters that lead to an improved photoactivity for modified chloroaluminum phthalocyanine thin films. J Phys Chem 100:7632–7645

    Article  CAS  Google Scholar 

  23. Harima Y, Yamashita K (1989) Electrochemical characterization of phthalocyanine thin films prepared by the electrolytic micelle disruption method. J Phys Chem 93:4184–4188

    Article  CAS  Google Scholar 

  24. Harima Y, Yamashita K (1988) Phthalocyanine photoelectrochemical cell prepared by a micelle disruption method. Appl Phys Lett 52:1542–1543

    Article  CAS  Google Scholar 

  25. Schuhmann W, Josel H-P, Parlar H (1987) A new photosynthesis-like system for the light-induced reduction of water to molecular hydrogen. Angew Chem Int Ed 26:241–243

    Article  Google Scholar 

  26. Perrier G, Dao LH (1987) Improvement of the performance of a hydroxyaluminum phthalocyanine photoelectrochemical cell by a phthalic acid treatment. J Electrochem Soc 134:1148–1152

    Article  CAS  Google Scholar 

  27. Klofta TJ, Sims TD, Pankow JW, Danziger J, Nebesny KW, Armstrong NR (1987) Spectroscopic and photoelectrochemical studies of trivalent metal phthalocyanine thin films: the role of gaseous dopants (oxygen and hydrogen) in determining photoelectrochemical response. J Phys Chem 91:5651–5659

    Article  CAS  Google Scholar 

  28. Klofta T, Rieke P, Linkous C, Buttner WJ, Nanthakumar A, Mewborn TD, Armstrong NR (1985) Tri- and tetravalent phthalocyanine thin film electrodes: comparison with other metal and demetallated phthalocyanine systems. J Electrochem Soc 132:2134–2143

    Article  CAS  Google Scholar 

  29. Buttner WJ, Rieke PC, Armstrong NR (1985) The gold/GaPc-Cl/ferri, ferrocyanide/GaPc-Cl/platinum photoelectrochemical cell. J Am Chem Soc 107:3738–3739

    Article  CAS  Google Scholar 

  30. Harima Y, Yamashita K (1985) Organic photoelectrodes based on p-p iso-type junctions. J Phys Chem 89:5325–5327

    Article  CAS  Google Scholar 

  31. Rieke PC, Armstrong NR (1984) Light-assisted, aqueous redox reactions at chlorogallium phthalocyanine thin-film photoconductors: dependence of the photopotential on the formal potential of the redox couple and evidence for photoassisted hydrogen evolution. J Am Chem Soc 106:47–50

    Article  CAS  Google Scholar 

  32. Belanger D, Dodelet JP, Dao LH, Lombos BA (1984) Photoelectrochemical characteristics and behavior of a surfactant aluminum phthalocyanine cell. J Phys Chem 88:4288–4295

    Article  CAS  Google Scholar 

  33. Leempoel P, Fan F-RF, Bard AJ (1983) Semiconductor electrodes. 50. Effect of mode of illumination and doping on photochemical behavior of phthalocyanine films. J Phys Chem 87:2948–2955

    Article  CAS  Google Scholar 

  34. Loutfy RO, McIntyre LF (1983) Phthalocyanines: electrolyte Schottky-Junction devices. Can J Chem 61:72–77

    Article  CAS  Google Scholar 

  35. Mezza TM, Linkous CL, Shepard VR, Armstrong NR (1981) Improved photoelectrochemical efficiencies at methalocyanine-modified SnO2 electrodes. J Electroanal Chem 124:311–320

    Article  CAS  Google Scholar 

  36. Meier H, Albrecht W, Tschirwitz U, Geheeb N, Zimmerhackl E (1979) Organische Halbleiter in Photoelektroden. Chem Ing Tech 51:653–656

    Article  CAS  Google Scholar 

  37. Tachikawa H, Faulkner LR (1978) Electrochemical and solid state studies of phthalocyanine thin film electrodes. J Am Chem Soc 100:4379–4385

    Article  CAS  Google Scholar 

  38. Meshitsuka S, Tamaru K (1977) Photoelectrocatalysis by metal phthalocyanine evaporated films in the oxidation of oxalate ion. J Chem Soc, Faraday Trans 1(73):236–242

    Article  Google Scholar 

  39. Meshitsuka S, Tamaru K (1977) Spectral distributions of photo-electrochemical reactions over metal phthalocyanine electrodes. J Chem Soc, Faraday Trans 1(73):760–767

    Article  Google Scholar 

  40. Meier H, Albrecht W, Tschirwitz U, Zimmerhackl E, Geheeb N (1977) Zum photovoltaischen Effekt am System Organischer Halbleiter/Elektrolyt. Ber Bunsenges Phys Chem 81:592–597

    Article  CAS  Google Scholar 

  41. Sevastyanov VI, Alferov GA, Asanov AN, Komissarov GG (1975) Photovoltaiv effect in the films of pigments contacting with electrolyte. Biofizika 20:1004–1009

    CAS  Google Scholar 

  42. Shumov YS, Heyrovsky M (1975) The relation between catalytic and photoelectro-chemical properties of phthalocyanine films. J Electroanal Chem 65:469–471

    Article  CAS  Google Scholar 

  43. Schlettwein D, Graaf H, Meyer J-P, Oekermann T, Jaeger NI (1999) Molecular interactions in thin films of hexadecafluorophthalocyaninatozinc (F16PcZn) as compared to islands of N, N’-dimethylperylene-3,4,9,10-bicarboximide (MePTCDI). J Phys Chem B 103:3078–3086

    Article  CAS  Google Scholar 

  44. Oekermann T, Schlettwein D, Jaeger NI (1999) Role of surface states and adsorbates in time-resolved photocurrent measurements and photovoltage generation at phthalocyaninatozinc(II)-photocathodes. J Electroanal Chem 462:222–234

    Article  CAS  Google Scholar 

  45. Oekermann T, Schlettwein D, Wöhrle D (1997) Characterization of N, N’-dimethyl-3,4,9,10-perylenetetracarboxylic acid diimide and phthalocyaninatozinc(II) in electrochemical photovoltaic cells. J Appl Electrochem 27:1172–1178

    Article  CAS  Google Scholar 

  46. Wöhrle D, Schlettwein D, Schnurpfeil G, Schneider G, Karmann E, Yoshida T, Kaneko M (1995) Phthalocyanines and related macrocycles for multi-electron transfer in catalysis, photochemistry and photoelectrochemistry. Polym Adv Technol 6:118–130

    Article  Google Scholar 

  47. Schlettwein D, Wöhrle D, Karmann E, Melville U (1994) Conduction type of substituted tetraazaporphyrins and perylene tetracarboxilic acid diimides as detected by thermoelectric power measurements. Chem Mater 6:3–6

    Article  CAS  Google Scholar 

  48. Yanagi H, Tsukatani K, Yamaguchi H, Ashida M, Schlettwein D, Wöhrle D (1993) Semiconducting behavior of substituted tetraazaporphyrin thin films in photoelectrochemical cells. J Electrochem Soc 140:1942–1948

    Article  CAS  Google Scholar 

  49. Sobbi AK, Wöhrle D, Schlettwein D (1993) Stability of various porphyrins in solution and as thin film electrodes. J Chem Soc Perkin Trans 2:481–488

    Article  Google Scholar 

  50. Schlettwein D, Jaeger NI (1993) Identification of the mechanism of the photoelectrochemical reduction of oxygen on the surface of a molecular semiconductor. J Phys Chem 97:3333–3337

    Article  CAS  Google Scholar 

  51. Schlettwein D, Jaeger NI, Wöhrle D (1992) Influence of polymer matrices on the photoelectrochemical properties of a molecular semiconductor by structural modification. Makromol Chem, Macromol Symp 59:267–279

    Article  CAS  Google Scholar 

  52. Schlettwein D, Jaeger NI, Wöhrle D (1991) Photoelectrochemical investigations of molecular semiconductors: characterization of the conduction type of various substituted porphyrins. Ber Bunsenges Phys Chem 95:1526–1530

    Article  CAS  Google Scholar 

  53. Schlettwein D, Kaneko M, Yamada A, Wöhrle D, Jaeger NI (1991) Light-induced dioxygen reduction at thin film electrodes of various porphyrins. J Phys Chem 95:1748–1755

    Article  CAS  Google Scholar 

  54. Wöhrle D, Schlettwein D, Kirschenmann M, Kaneko M, Yamada A (1990) The combination of phtha-locyanines and polymers for electrochemically induced processes. J Macromol Sci Chem A 27:1239–1260

    Article  Google Scholar 

  55. Kaneko M, Wöhrle D, Schlettwein D, Schmidt V (1988) Dioxygen sensitivity of a photoexcited thin film of phthalocyanine dispersed in poly(vinylcarbazole). Makromol Chem 189:2419–2425

    Article  CAS  Google Scholar 

  56. Shepard VR, Armstrong NR (1979) Electrochemical and photoelectrochemical studies of copper and cobalt phthalocyanine-tin oxide electrodes. J Phys Chem 83:1268–1276

    Google Scholar 

  57. Giraudeau A, Fan F-RF, Bard AJ (1980) Semiconductor electrodes. 30. Spectral sensitization of the semiconductors titanium oxide (n-TiO2) and tungsten oxide (n-WO3) with metal phthalocyanines. J Am Chem Soc 102:5137–5142

    Article  CAS  Google Scholar 

  58. Jaeger CD, Fan F-RF, Bard AJ (1980) Semiconductor electrodes. 26. Spectral sensitization of semiconductors with phthalocyanine. J Am Chem Soc 102:2592–2598

    Article  CAS  Google Scholar 

  59. Yanagi H, Chen S, Lee PA, Nebesny KW, Armstrong NR, Fujishima A (1996) Dye-sensitizing effect of TiOPc thin film on n-TiO2 (001) surface. J Phys Chem 100:5447–5451

    Article  CAS  Google Scholar 

  60. Nazeeruddin MK, Humphry-Baker R, Grätzel M, Wöhrle D, Schnurpfeil G, Schneider G, Hirth A, Trombach N (1999) Efficient near-IR sensitization of nanocrystalline TiO2 films by zinc and aluminum phthalocyanines. J Porphyrins Phthalocyanines 3:230–237

    Article  CAS  Google Scholar 

  61. Gerischer H (1978) Electrochemistry of the excited electronic state. J Electrochem Soc 125:218C–226C

    Article  CAS  Google Scholar 

  62. Sze SM (1981) Physics of semiconductor devices. Wiley, New York

    Google Scholar 

  63. Rompf C, Ammermann D, Kowalsky W (1995) Deposition and characterization of crystalline organic semiconductors for photonic devices. Mater Sci Technol 11:845–848

    Article  CAS  Google Scholar 

  64. Koma A (1995) Molecular-beam epitaxial-growth of organic thin films. Prog Crystal Growth Charact 30:129–152

    Article  CAS  Google Scholar 

  65. Schmidt A, Chau LK, Back A, Armstrong NR (1996) Epitaxial phthalocyanine ultrathin films grown by organic molecular beam epitaxy (OMBE). In: Leznoff CC, Lever ABP (eds) Phthalocyanines: properties and applications, vol 4. VCH, New York, Weinheim, Cambridge, pp 307–341

    Google Scholar 

  66. Yamashita A, Hayashi T (1996) Organic molecular beam deposition of metallophthalocyanines for opto-electonics applications. Adv Mater 8:791–799

    Article  CAS  Google Scholar 

  67. Schlettwein D, Alloway D, Back A, Nebesny KW, Lee PA, Armstrong NR (2002) Organic molecular beam epitaxy (OMBE): creation of ordered organic thin films and organic/organic’ heterojunctions. In: Hubbard A (ed) Encyclopedia of surface and colloid science. Marcel Dekker, New York, pp 3842–3857

    Google Scholar 

  68. Schlettwein D (2001) Electronic properties of molecular organic semiconductor thin films. In: Nalwa H (ed) Supramolecular photosensitive and electroactive materials. Academic Press, San Diego, pp 211–338

    Google Scholar 

  69. Hooks DE, Fritz T, Ward MD (2001) Epitaxy and molecular organization on solid substrates. Adv Mater 13:227–241

    Article  CAS  Google Scholar 

  70. Jaegermann W, Mayer T (1995) What do we learn from model experiments of semiconductor/electrolyte interfaces in UHV-coadsorption of Br 2 with Na and H2O on WSe(0001)? Surf Sci 335:343–352

    Article  CAS  Google Scholar 

  71. Svensson S, Forsell J-O, Siegbahn H, Ausmees A, Bray G, Södergren S, Sundin S, Osborne SJ, Aksela S, Nommiste E, Jauhiainen J, Jurvansuu M, Karvonen J, Barta P, Salaneck WR, Evaldsson A, Lögdlund M, Fahlmann A (1996) New end station for the study of gases, liquids, and solid films at the MAX laboratory. Rev Sci Instrum 67:2149–2156

    Article  CAS  Google Scholar 

  72. Lindström H, Rensmo H, Lindquist S-E, Hagfeldt A, Henningsson A, Södergren S, Siegbahn H (1998) Redox properties of nanoporous TiO2 (anatase) surface modified with phosphotungstic acid. Thin Solid Films 323:141–145

    Article  Google Scholar 

  73. Bansal A, Lewis NS (1998) Stabilization of Si photoanodes in aqueous electrolytes through surface alkylation. J Phys Chem B 102:4058–4060

    Article  CAS  Google Scholar 

  74. Sturzenegger M, Prokopuk N, Kenyon CN, Royea WJ, Lewis NS (1999) Reactions of etched, single crystal (111)B-oriented InP to produce functionalized surfaces with low electrical defect densities. J Phys Chem B 103:10838–10849

    Article  CAS  Google Scholar 

  75. Beerbom M, Henrion O, Klein A, Mayer T, Jaegermann W (2000) XPS analysis of wet chemical etching of GaAs(110) by Br-2-H2O: comparison of emersion and model experiments. Electrochim Acta 45:4663–4672

    Article  CAS  Google Scholar 

  76. Smolenyak PE, Peterson RA, Dunphy DR, Mendes S, Nebesny KW, O’Brien DF, Saavedra SS, Armstrong NR (1999) Formation and spectroelectrochemical characterization of multilayer and submonolayer thin films of 2,3,9,10,16,17,23,24-octa(2-benzyloxyethoxy) phthalocyninato copper (CuPc(OC(2)OBz)(8)). J Porphyrins Phthalocyanin 3:620–633

    Article  CAS  Google Scholar 

  77. Smolenyak PE, Peterson RA, Nebesny KW, Törker M, O’Brien DF, Armstrong NR (1999) Highly ordered thin films of octasubstituted phthalocyanines. J Am Chem Soc 121:8628–8636

    Article  CAS  Google Scholar 

  78. Fox M-A (1999) Fundamentals in the design of molecular electronic devices: Long-range charge carrier transport and electronic coupling. Acc Chem Res 32:201–207

    Article  CAS  Google Scholar 

  79. Eichhorn H, Bruce DW, Wöhrle D (1998) Amphitropic mesomorphic phthalocyanines—a new approach to highly ordered layers. Adv Mater 10:419–422

    Article  CAS  Google Scholar 

  80. Cook MJ (1999) Phthalocyanine thin films. Pure Appl Chem 71:2145–2151

    Article  CAS  Google Scholar 

  81. Wegner G (1991) Ultrathin films of polymers. Ber Bunsenges Phys Chem 95:1326–1333

    Article  CAS  Google Scholar 

  82. Wegner G (1992) Ultrathin films of polymers: architecture, characterization, properties, thin solid films 216:105–116

    Google Scholar 

  83. Wu J, Lieser G, Wegner G (1996) Direct imaging of individual shape-persistent macromolecules and their interaction by TEM. Adv Mater 2:151–154

    Article  Google Scholar 

  84. Silerova(Back) R, Kalvoda L, Neher D, Ferencz A, Wu J, Wegner G (1998) Electrical conductivity of highly organized Langmuir-Blodgett films of phthalocyaninatopolysiloxane. Chem Mater 10:2284–2292

    Google Scholar 

  85. Gattinger P, Rengel H, Neher D, Gurka M, Buck M, van de Craats AM, Warman JM (1999) Mechanism of charge transport in anisotropic layers of a phthalocyanine polymer. J Phys Chem B 103:3179–3186

    Google Scholar 

  86. Sato N, Yoshida H, Tsutsumi K (2003) Unoccupied electronic states in phthalocyanine thin films studied by inverse photoemission spectroscopy. Synth Metals 133:673–674

    Article  CAS  Google Scholar 

  87. Hill IG, Kahn A, Soos ZG, Pascal RA Jr (2000) Charge-separation energy in films of pi-conjugated organic molecules. Chem Phys Lett 327:181–188

    Article  CAS  Google Scholar 

  88. Wu CI, Hirose Y, Sirringhaus H, Kahn A (1997) Electron-hole interaction energy in the organic molecular semiconductor PTCDA. Chem Phys Lett 272:43–47

    Article  CAS  Google Scholar 

  89. Meier H, Albrecht W (1965) Zum Problem der pn-Übergänge zwischen organischen und anorganischen Photoleitern. Ber Bunsenges Phys Chem 69:160–167

    Article  CAS  Google Scholar 

  90. Meier H (1974) Organic semiconductors. VCH, Weinheim

    Google Scholar 

  91. Simon J, Andre J-J (1985) Molecular semiconductors: photoelectrical properties and solar cells. Springer, Berlin

    Book  Google Scholar 

  92. Wright JD (1989) Gas adsorption on phthalocyanines and its effects on electrical properties. Prog Surf Sci 31:1–60

    Article  CAS  Google Scholar 

  93. Snow AW, Barger WR (1989) Phthalocyanine Films in Chemical Sensors. In: Leznoff CC, Lever ABP (1989) Phthalocyanines: properties and applications, vol 1. VCH, New York, Weinheim, Cambridge 1989, pp 341–392

    Google Scholar 

  94. Guillaud G, Simon J, Germain JP (1998) Metallophthalocyanines—Gas sensors, resistors and field effect transistors. Coord Chem Rev 178:1433–1484

    Article  Google Scholar 

  95. Schlettwein D, Armstrong NR, Lee PA, Nebesny KW (1994) Factors which control the n- type or p-type behavior of molecular semiconductor thin films. Mol Cryst Liq Cryst 253:161–171

    Article  Google Scholar 

  96. Schlettwein D, Armstrong NR (1994) Correlation of frontier orbital positions and conduction type of molecular semiconductors as derived from UPS in combination with electrical and photoelectrochemical experiments. J Phys Chem 98:11771–11779

    Article  CAS  Google Scholar 

  97. Meyer J-P, Schlettwein D, Wöhrle D, Jaeger NI (1995) Charge transport in thin films of molecular semiconductors as investigated by measurements of thermoelectric power and electrical conductivity. Thin Solid Films 258:317–324

    Article  CAS  Google Scholar 

  98. Meyer J-P, Schlettwein D (1996) Influence of central metal and ligand system on conduction type and charge carrier transport in phthalocyanine thin films, D. Adv Mat Opt Electron 6:239–244

    Article  CAS  Google Scholar 

  99. Schlettwein D, Meyer J-P, Jaeger NI (1999) Intermolecular interactions and electrical properties in thin films of tetrapyridotetraazaporphyrinatozinc(II). J Porphyrins Phthalocyanin 3:611–619

    Article  CAS  Google Scholar 

  100. Schmidt A, Schlaf R, Louder D, Chau LK, Chen S-Y, Fritz T, Lawrence MF, Parkinson BA, Armstrong NR (1995) Epitaxial growth of the ionic polymer fluoroaluminum phthalocyanine on th ebasal plane of singlecrystal tin disulfide. Chem Mater 7:2127–2135

    Article  CAS  Google Scholar 

  101. Chau LK, England CD, Chen S-Y, Armstrong NR (1993) Visible absorption and photocurrent spectra of epitaxially deposited phthalocyanine thin films: interpretation of exciton coupling effects. J Phys Chem 97:2699–2706

    Article  CAS  Google Scholar 

  102. Bufler J (1993) Dissertation: Vergleichende elektrische, elektrochemische und oberflächenspektroskopische Untersuchungen an den radikalischen Phthalocyaninen LuPc2 und LiPc. Universität Tübingen, Tübingen

    Google Scholar 

  103. Ishii H, Sugiyama K, Ito E, Seki K (1999) Energy level alignment and interfacial electronic structures at organic metal and organic interfaces. Adv Mater 11:605–625

    Article  CAS  Google Scholar 

  104. Ishii H, Sugiyama K, Yoshimura D, Ito E, Ouchi Y, Seki K (1998) Energy-level alignment at model interfaces of organic electroluminescent devices studied by UV photoemission: Trend in the deviation from the traditional way of estimating the interfacial electronic structures. IEEE J Selected Topics in Quantum Chemistry 4:24–33

    Article  CAS  Google Scholar 

  105. Tamoto N, Adachi C, Nagai K (1997) Electroluminescence of 1,3,4-oxadiazole and triphenylamine-containing molecules as an emitter in organic multilayer light emitting diodes. Chem Mater 9:1077–1085

    Article  CAS  Google Scholar 

  106. Hung LS, Tang CW (1999) Interface engineering in preparation of organic surfaceemitting diodes. Appl Phys Lett 74:3209–3211

    Article  CAS  Google Scholar 

  107. Hiller S, Schlettwein D, Armstrong NR, Wöhrle D (1998) Influence of surface reactions and ionization gradients on junction properties of F16PcZn. J Mater Chem 8:945–954

    Article  CAS  Google Scholar 

  108. Karl N, Sato N (1992) UV-photoelectron spectroscopy of one- and two-component organic crystals. Mol Cryst Liq Cryst 218:79–84

    Article  CAS  Google Scholar 

  109. Sato N, Yoshikawa M (1996) Valence electronic structure at the interface of organic thin films. J Electron Spectrosc Relat Phenom 78:387–390

    Article  CAS  Google Scholar 

  110. Schlaf R, Parkinson BA, Lee PA, Nebesny KW, Armstrong NR (1998) Determination of frontier orbital alignment and band bending at an organic semiconductor heterointerface by combined X-ray and ultraviolet photoemission measurements. Appl Phys Lett 73:1026–1028

    Article  CAS  Google Scholar 

  111. Rajagopal A, Kahn A (1998) Molecular-level offset at the PTCDA/Alq(3) heterojunction. Adv Mater 10:140–144

    Article  CAS  Google Scholar 

  112. Hill IG, Kahn A (1998) Energy level alignment at interfaces of organic semiconductor heterostructures. J Appl Phys 84:5583–5586

    Article  CAS  Google Scholar 

  113. Rajagopal A, Wu CI, Kahn A (1998) Energy level offset at organic semiconductor heterojunctions. J Appl Phys 83:2649–2655

    Article  CAS  Google Scholar 

  114. Hill IG, Kahn A (1999) Combined photoemission/in vacuo transport study of the indium tin oxide/copper phthalocyanine/N, N’-diphenyl-N, N’-bis(l-naphthyl)-1,1’ biphenyl-4,4’’ diamine molecular organic semiconductor system. J Appl Phys 86:2116–2122

    Article  CAS  Google Scholar 

  115. Lee ST, Wang YM, Hou XY, Tang CW (1999) Interfacial electronic structures in an organic light-emitting diode. Appl Phys Lett 74:670–672

    Article  CAS  Google Scholar 

  116. Schlaf R, Parkinson BA, Lee PA, Nebesny KW, Armstrong NR (1999) HOMO/LUMO alignment at PTCDA/ZnPc and PTCDA/ClInPc heterointerfaces determined by combined UPS and XPS measurements. J Phys Chem B 103:2984–2992

    Article  CAS  Google Scholar 

  117. Darwent JR, Douglas P, Harriman A, Porter G, Richoux M-C (1982) Metal phthalocyanines and porphyrins as photosensitizers for reduction of water to hydrogen. Coord Chem Rev 44:83–126

    Article  CAS  Google Scholar 

  118. Ferraudi G (1989) Photochemical properties of metallophthalocyanines in homogeneous solution. In: Leznoff CC, Lever ABP (ed) Phthalocyanines, properties and applications, vol 1. VCH, New York, Weinheim, Cambridge 1989, pp 291–340

    Google Scholar 

  119. Fan F-R, Faulkner LR (1979) Phthalocyanine thin films as semiconductor electrodes. J Am Chem Soc 101:4779–4787

    Article  CAS  Google Scholar 

  120. Klofta T, Buttner WJ, Armstrong NR (1986) Effect of crystallite size and hydrogen and oxygen uptake in the photoelectrochemistries of thin films of chlorogallium phthalocyanine. J Electrochem Soc 133:1531–1532

    Article  CAS  Google Scholar 

  121. Klofta TJ, Danziger J, Lee PA, Pankow J, Nebesny KW, Armstrong NR (1987) Photoelectrochemical and spectroscopic characterization of thin films of titanyl phthalocyanine: comparisons with vanadyl phthalocyanine. J Phys Chem 91:5646–5651

    Article  CAS  Google Scholar 

  122. Yanagi H, Douko S, Ueda Y, Ashida M, Wöhrle D (1992) Improvement of photoelectrochemical properties of chloroaluminum phthalocyanine thin films by controlled crystallization and molecular orientation. J Phys Chem 96:1366–1372

    Article  CAS  Google Scholar 

  123. Perrier G, Dao LH (1986) Cellules photoélectrochimiques de phtalocyanine d′hydroxyaluminium déposées par rotation. Can J Chem 64:2431–2439

    Article  CAS  Google Scholar 

  124. Karmann E, Schlettwein D, Jaeger NI (1996) Photoelectrochemical oxidation of 2-mercaptoethanol at the surface of octacyanophthalocyanine thin film electrodes. J Electroanal Chem 405:149–158

    Article  Google Scholar 

  125. Karmann E, Meyer J-P, Schlettwein D, Jaeger NI, Anderson M, Schmidt A, Armstrong NR (1996) Photoelectrochemical effects and (photo)conductivity of “n-type” phthalocyanines. Mol Cryst Liq Cryst 283:283–291

    Article  CAS  Google Scholar 

  126. Yanagi H, Kanbayashi Y, Schlettwein D, Wöhrle D, Armstrong NR (1994) Photochemical investigations on naphthalocyanine derivatives in thin films. J Phys Chem 98:4760–4766

    Article  CAS  Google Scholar 

  127. Karmann E (1996) Dissertation: Photoelektrochemische Untersuchungen an dünnen Filmen molekularer n-Halbleiter mit Porphyrinstruktur. Universität Bremen, Bremen

    Google Scholar 

  128. Schlettwein D, Karmann E, Oekermann T, Yanagi H (2000) Wavelength-dependent switching of the photocurrent direction at the surface of molecular semiconductor electrodes based on orbital-confined excitation and transfer of charge carriers from higher excited states. Electrochim Acta 45:4679–4704

    Article  Google Scholar 

  129. Oekermann T, Schlettwein D, Jaeger NI, Wöhrle D (1999) Influence of electronwithdrawing substituents on photoelectrochemical surface phenomena at phthalocyanine thin film electrodes. J Porphyrins Phthalocyanin 3:444–452

    Article  CAS  Google Scholar 

  130. Oekermann T (2000) Die Rolle von Oberflächenzuständen in der Kinetik photoelektrochemischer Reaktionen an Elektroden molekularer Halbleiter. Shaker Verlag, Aachen

    Google Scholar 

  131. van Vlierberge B, Yang MZ, Sauvage FX, de Backer M-G, Chapput A (1986) The photoreduction of zinc tetra-2,3-pyridino porphyrazine: a photochemical, electrochemical and spectroscopic study. Spectrochim Acta 42:1133–1139

    Article  Google Scholar 

  132. Yang MZ, de Backer MG, Sauvage FX (1990) Electrochemical and photoelectrochemical characterizations of electrodes covered by zinc tetra 2,3 pyridinoporphyrazine layers. New J Chem 14:273–277

    CAS  Google Scholar 

  133. Wöhrle D, Bannehr R, Schumann B, Meyer G, Jaeger NI (1983) Synthesis, electrochemical and photoelectrochemi-cal properties of polyphthalocyanine coated electrodes. J Mol Cat 21:255–262

    Article  Google Scholar 

  134. Knothe G, Wöhrle D (1989) Polymeric phthalocyanines and their precursors, 16; a structure model for polymeric phthalocyanines. Makromol Chem 190:1573–1586

    Article  CAS  Google Scholar 

  135. Knothe G (1993) Isomerism and symmetry of bridged polymeric phthalocyanines. Macromol Theory Simul 2:503–516

    Article  CAS  Google Scholar 

  136. Stillman MJ, Nyokong T (1989) Absorption and magnetic circular dichroism spectral properties of phthalocyanines. In: Leznoff CC, Lever ABP (ed) Phthalocyanines: properties and applications, vol 1. VCH, New York, Weinheim, Cambridge 1989, pp 133–290

    Google Scholar 

  137. Gouterman M (1978) Optical spectra and atomic structure. In: Dolphin D (ed) The porphyrins, part A vol III. Academic Press, New York, pp 1–159

    Google Scholar 

  138. Kobayashi N, Konami H (1996) Molecular orbitals and electronic spectra of phthalocyanine analogues. In: Leznoff CC, Lever ABP (ed) Phthalocyanines: properties and applications, vol 4. VCH, New York, Weinheim, Cambridge, pp 343–404

    Google Scholar 

  139. Green MA (2003) Third generation photovoltaics: advanced solar energy conversion. Springer, Berlin

    Google Scholar 

  140. Bard AJ, Faulkner LR (1980) Electrochemical methods. Wiley, New York

    Google Scholar 

  141. Wilson RH (1977) A model for the current-voltage curve of photoexcited semiconductor electrodes. J Appl Phys 48:4292–4297

    Article  CAS  Google Scholar 

  142. Chazalviel J-N (1982) Electrochemical transfer via surface states: a new formulation for the semiconductor/electrolyte interface. J Electrochem Soc 129:963–969

    Article  CAS  Google Scholar 

  143. Abrantes LM, Peter LM (1983) Transient photocurrents at passive iron electrodes. J Electroanal Chem 150:593–601

    Article  CAS  Google Scholar 

  144. Gerischer H (1991) Electron-transfer kinetics of redox reactions at the semiconductor/electrolyte contact. A new approach. J Phys Chem 95:1356–1359

    Article  CAS  Google Scholar 

  145. Hagfeldt A, Grätzel M (1995) Light- induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68

    Article  CAS  Google Scholar 

  146. Batchelor RA, Hamnett A (1992) Surface states on semiconductors. In: Bockris JO, Conway BE, White RE (1992) Modern aspects of electrochemistry, vol 22. Kluwer Academic Publishers/Plenum Publishers, Boston, pp 265–415

    Google Scholar 

  147. Bard AJ, Bocarsly AB, Fan F-RF, Walton EG, Wrighton MS (1980) The concept of Fermi level pinning at semiconductor/liquid junctions. Consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices. J Am Chem Soc 102:3671–3677

    Article  CAS  Google Scholar 

  148. Bocarsly AB, Bookbinder DC, Dominey RN, Lewis NS, Wrighton MS (1980) Photoreduction at illuminated p-type semiconducting silicon photoelectrodes. Evidence for Fermi level pinning. J Am Chem Soc 102:3683–3688

    Article  CAS  Google Scholar 

  149. Lewerenz HJ (1993) Surface states and fermi level pinning at semiconductor/electrolyte junctions. J Electroanal Chem 356:121–143

    Article  CAS  Google Scholar 

  150. Albery WJ, Dias NL, Wilde CP (1987) The photoelectrochemical kinetics of n-type cadmium sulfide I. The hydroquinone system. J Electrochem Soc 134:601–609

    Article  CAS  Google Scholar 

  151. Peter LM (1990) Dynamic aspects of semiconductor photoelectrochemistry. Chem Rev 90:753–769

    Article  CAS  Google Scholar 

  152. Rajeshwar K (1992) Charge transfer in photoelectrochemical devices via interface states: unified model and comparison with experimental data. J Electrochem Soc 129:1003–1008

    Article  Google Scholar 

  153. Kelly JJ, Memming R (1992) The influence of surface recombination and trapping on the cathodic photocurrent at p-type III-V-electrodes. J Electrochem Soc 129:730–738

    Article  Google Scholar 

  154. Schwarzburg K, Willig F (1997) Modeling of electrical transients in thesemiconductor/electrolyte cell for photogeneration of charge carriers in the bulk. J Phys Chem B 101:2451–2458

    Article  CAS  Google Scholar 

  155. Smith BB, Nozik AJ (1997) Theoretical studies of electron transfer and electron localization at the semiconductor-liquid interface. J Phys Chem B 101:2459–2475

    Article  CAS  Google Scholar 

  156. Albery WJ, Bartlett PN, Wilde CP (1987) Modulated light studies of the electrochemistry of semiconductors. Theory and experiment. J Electrochem Soc 134:2486–2490

    Article  CAS  Google Scholar 

  157. Schefold J (1992) Impedance and intensity modulated photocurrent spectroscopy as complementary differential methods in photoelectrochemistry. J Electroanal Chem 341:111–136

    Article  CAS  Google Scholar 

  158. Modestov AD, Zhou G-D, Ge H-H, Loo BH (1994) A study of copper electrode behavior in alkaline solutions containing benzotriazole-type inhibitors by the photocurrent response method and intensity- modulated photocurrent spectroscopy. J Electroanal Chem 375:293–299

    Article  CAS  Google Scholar 

  159. Goossens A (1996) Intensity-modulated photocurrent spectroscopy of thin anodic films on titanium. Surf Sci 365:662–671

    Article  CAS  Google Scholar 

  160. Oskam G, Schmidt JC, Searson PC (1996) Electrical properties of n-type (111)Si in aqueous K4Fe(CN)6 solution. 2. Intensity modulated photocurrent spectroscopy. J Electrochem Soc 143:2538–2543

    Article  CAS  Google Scholar 

  161. Schlichthörl G, Park NG, Frank AJ (1999) Estimation of the charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells. Z Phys Chem 212:45–50

    Article  Google Scholar 

  162. Peter LM, Vanmaekelbergh D (1999) Time and frequency resolved studies of photoelectrochemical kinetics. In: Alkire RC, Kolb DM (ed) Advances in electrochemical science and engineering, vol 6. Wiley-VCH, Weinheim 1999, pp 77–163

    Google Scholar 

  163. Oekermann T, Schlettwein D, Jaeger NI (2001) Charge transfer and recombination kinetics at electrodes of molecular semiconductors investigated by intensity modulated photocurrent spectroscopy. J Phys Chem B 105:9524–9532

    Article  CAS  Google Scholar 

  164. Meier H (1965) Organic dyes as photoelectric semiconductors. Angew Chem Int Ed 4:619–635

    Article  Google Scholar 

  165. Peat R, Peter LM (1987) A study of the passive film on iron by intensity modulated photocurrent spectroscopy. J Electroanal Chem 228:351–364

    Article  CAS  Google Scholar 

  166. Li J, Peter LM (1986) Surface recombination at semiconductor electrodes: part iv. Steady-state and intensity modulated photocurrents at n-GaAs electrodes. J Electroanal Chem 199:1–26

    Article  CAS  Google Scholar 

  167. Taira S, Miki T, Yanagi H (1999) Dye-sensitization of n-TiO2 single-crystal electrodes with vapor-deposited oxometal phthalocyanines. Appl Surf Sci 143:23–29

    Article  CAS  Google Scholar 

  168. Armstrong NR, Nebesny KW, Collins CE, Lee PA, Chau LK, Arbour C, Parkinson BA (1991) O/I-MBE: formation of highly ordered phthalocyanine/semiconductor junctions by molecular-beam epitaxy: photoelectrochemical characterization. In: Lessard RA (ed) Photopolymer device physics, chemistry, and applications II. Proceedings of SPIE vol 1559, The International Society for Optical Engineering, Bellingham, WA, pp18–26

    Google Scholar 

  169. Chau LK, Arbour C, Collins GE, Nebesny KW, Lee PA, England CD, Armstrong NR, Parkinson BA (1993) Phthalocyanine aggregates on metal dichalcogenide surfaces: dye sensitization on tin disulfide semiconductor electrodes by ordered and disordered chloroindium phthalocyanine thin films. J Phys Chem 97:2690–2698

    Article  CAS  Google Scholar 

  170. Chau LK, Osburn EJ, Armstrong NR, O’Brien DF, Parkinson BA (1994) Dye Sensitization with octasubstituted liquid crystalline phthalocyanines. Langmuir 10:351–353

    Article  CAS  Google Scholar 

  171. Deng H, Mao H, Liang B, Shen Y, Lu Z, Xu H (1996) Aggregation and the photoelectric behavior of tetrasulfonated phthalocyanine adsorbed on a TiO2 microporous electrode. J Photochem Photobiol A 99:71–74

    Article  CAS  Google Scholar 

  172. Hodak J, Quinteros C, Litter MI, San Roman E (1996) Sensitization of TiO2 with phthalocyanines.1. Photo-oxidations using hydroxoaluminium tricarboxymonoamidephthalocyanine adsorbed on TiO2. J Chem Soc, Faraday Trans 92:5081–5088

    Article  CAS  Google Scholar 

  173. Yanagi H, Ohoka Y, Hishiki T, Ajito K, Fujishima A (1997) Characterization of dyedoped TiO2 films prepared by spray-pyrolysis. Appl Surf Sci 113:426–431

    Article  Google Scholar 

  174. Fang J, Wu J, Zhang X, Mao H, Shen Y, Lu Z (1997) Fabrication, characterization and photovoltaic study of a GaTSPc-CdS/TiO2 particulate film. J Mater Chem 7:737–740

    Article  CAS  Google Scholar 

  175. Nazeeruddin MK, Humphry-Baker R, Grätzel M, Murrer BA (1998) Efficient near IR sensitization of nanocrystalline TiO2 films by ruthenium phthalocyanines. Chem Commun 719–720

    Google Scholar 

  176. Diacon A, Fara L, Cincu C, Mitroi MR, Zaharia C, Rusen E, Boscornea C, Rosu C, Comaneci D (2010) New materials for hybrid dye-sensitized solar cells. Optical Mat 32:1583–1586

    Article  CAS  Google Scholar 

  177. Yanagisawa M, Korodi F, Bergquist J, Holmberg A, Hagfeldt A, Akermark B, Sun L (2004) Synthesis of phthalocyanines with two carboxylic acid groups and their utilization in solar cells based on nano-structured TiO2. J Porphyrins Phthalocyanines 8:1228–1235

    Article  CAS  Google Scholar 

  178. Martin-Gomez L, Barea EM, Fernandez-Lazaro F, Bisquert J, Sastre-Santos A (2011) Dye sensitized solar cells using non-aggregated silicon phthalocyanines. J Porphyrins Phthalocyanines 15:1004–1010

    Article  CAS  Google Scholar 

  179. Lin K-C, Doane T, Wang L, Li P, Pejic S, Kenney ME, Burda C (2014) Laser spectroscopic assessment of a phthalocyanine-sensitized solar cell as a function of dye loading. Sol Energy Mater Sol Cells 126:155–162

    Article  CAS  Google Scholar 

  180. Barea EM, Ortiz J, Paya FJ, Fernandez-Lazaro F, Fabregat-Santiago F, Sastre-Santos A, Bisquert J (2010) Energetic factors governing injection, regeneration and recombination in dye solar cells with phthalocyanine sensitizers. Energy Environ Sci 3:1985–1994

    Article  CAS  Google Scholar 

  181. Cid J-J, Yum J-H, Jang S-R, Nazeeruddin MdK, Martinez-Ferrero E, Palomares E, Ko J, Grätzel M, Torres T (2007) Molecular cosensitization for efficient panchromatic dye-sensitized solar cells. Angew Chem Int Ed 46:8358–8362

    Article  CAS  Google Scholar 

  182. Yum J-H, Jang S-R, Humphry-Baker R, Grätzel M, Cid J-J, Torres T, Nazeeruddin MdK (2008) Langmuir 24:5636–5640

    Article  CAS  Google Scholar 

  183. Listorti A, López-Duarte I, Martínez-Díaz MV, Torres T, DosSantos T, Barnes PR, Durrant JR (2010) Zn(II) versus Ru(II) phthalocyanine-sensitised solar cells. A comparison between singlet and triplet electron injectors. Energy Environ Sci 3:1573–1579

    Article  CAS  Google Scholar 

  184. Lee J, Leventis HC, Haque SA, Torres T, Grätzel M, Nazeeruddin MdK (2011) Panchromatic response composed of hybrid visible-light absorbing polymers and near-IR absorbing dyes for nanocrystalline TiO2-based solid-state solar cells. J Power Source 196:596–599

    Article  CAS  Google Scholar 

  185. Cid J-J, Garía-Iglesias M, Yum J-H, Forneli A, Albero J, Martínez –Ferrero E, Vázquez P, Grätzel M, Nazeeruddin K, Palomares E, Torres T (2009) Structure–function relationships in unsymmetrical zinc phthalocyanines for dye-sensitized solar cells. Chem Eur J 15:5130–5137

    Google Scholar 

  186. Giribabu L, Kumar CV, Reddy PY, Yum J-H, Grätzel M, Nazeeruddin MdK (2009) Unsymmetrical extended π-conjugated zinc phthalocyanine for sensitization of nanocrystalline TiO2 films. J Chem Sci 121:75–82

    Article  CAS  Google Scholar 

  187. Reddy PY, Giribabu L, Lyness C, Snaith HJ, Vijaykumar C, Chandrasekharam M, Lakshmikantam M, Yum J-H, Kalyanasundaram K, Grätzel M, Nazeeruddin MdK (2007) Efficient sensitization of nanocrystalline TiO2 films by a near-IR absorbing unsymmetrical zinc phthalocyanine. Angew Chem Int Ed 47:373–376

    Article  CAS  Google Scholar 

  188. Giribabu L, Kumar CV, Raghavender M, Somaiah K, Reddy PY, Rao VP (2008) Durable unsymmetrical zinc phthalocyanine for near IR sensitization of nanocrystalline TiO2 films with non-volatile redox electrolytes. J Nano Res 2:39–48

    Article  CAS  Google Scholar 

  189. Hagfeldt A, Grätzel M (2000) Molecular photovoltaics. Acc Chem Res 33:269–277

    Article  CAS  Google Scholar 

  190. Nazeeruddin MdK, Humphry-Baker R, Officer DL, Campbell WM, Burrell AK, Grätzel M (2004) Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity. Langmuir 20:6514–6517

    Article  CAS  Google Scholar 

  191. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MdK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334:629–634

    Article  CAS  Google Scholar 

  192. Lim B, Margulis GY, Yum J-H, Unger EL, Hardin BE, Grätzel M, McGehee MD, Sellinger S (2013) Silicon-naphthalo/phthalocyanine-hybrid sensitizer for efficient red response in dye-sensitized solar cells. Org Lett 15:784–787

    Article  CAS  Google Scholar 

  193. Holliman PJ, Davies ML, Connell A, Vaca Velasco B, Watson TM (2010) Ultra-fast dye sensitisation and co-sensitisation for dye sensitized solar cells. Chem Commun, 7256–7258

    Google Scholar 

  194. Kuang D, Walter P, Nüesch F, Kim S, Ko J, Comte P, Zakeeruddin SM, Nazeeruddin MdK, Grätzel M (2007) Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells. Langmuir 23:10906–10909

    Article  CAS  Google Scholar 

  195. Yum JH, Jang SR, Walter P, Geiger T, Nüesch F, Kim S, Ko J, Grätzel M, Nazeeruddin Md K (2007) Efficient co-sensitization of nanocrystalline TiO2 films by organic sensitizers. Chem Commun 4680–4682

    Google Scholar 

  196. Rensmo H, Keis K, Lindström H, Södergren S, Solbrand A, Hagfeldt A, Lindquist S-E, Wang LN, Muhammed M (1997) High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J Phys Chem B 101:2598–2601

    Article  CAS  Google Scholar 

  197. Bedja I, Kamat PV, Hua X, Lappin AG, Hotchandani S (1997) Photosensitization of nanocrystalline ZnO films by bis(2,2’-bipyridine)(2,2’-bipyridine-4,4’-dicarboxylic acid)ruthenium(II). Langmuir 13:2398–2403

    Article  CAS  Google Scholar 

  198. Rao TN, Bahadur L (1997) Photoelectrochemical studies on dye-sensitized particulate ZnO thin-film photoelectrodes in nonaqueous media. J Electrochem Soc 144:179–185

    Article  CAS  Google Scholar 

  199. Fessenden RW, Kamat PV (1995) Rate constants for charge injection from excited sensitizer into SnO2, ZnO, and TiO2 semiconductor nanocrystallites. J Phys Chem 99:12902–12906

    Article  CAS  Google Scholar 

  200. Yoshida T, Minoura H (2000) Electrochemical self-assembly of dye-modified zinc oxide thin films. Adv Mater 12:1219–1222

    Article  CAS  Google Scholar 

  201. Yoshida T, Miyamoto K, Hibi N, Sugiura T, Minoura H, Schlettwein D, Oekermann T, Schneider G, Wöhrle D (1998) Self assembled growth of nano particulate porous ZnO thin film modified by 2,9,16,23-tetrasulfophthalocyanatozinc(II) by one-step electrodeposition. Chem Lett 7:599–600

    Article  Google Scholar 

  202. Yoshida T, Tochimoto M, Schlettwein D, Schneider G, Wöhrle D, Sugiura T, Minoura H (1999) Self-assembly of zinc oxide thin films modified with tetrasulfonated metallophthalocyanines by one-step electrodeposition. Chem Mater 11:2657–2667

    Article  CAS  Google Scholar 

  203. Yoshida T, Terada K, Schlettwein D, Oekermann T, Sugiura T, Minoura H (2000) Electrochemical self-assembly of nanoporous ZnO/eosin Y thin films and their sensitized photoelectrochemical performance. Adv Mater 12:1214–1217

    Article  CAS  Google Scholar 

  204. Schubert U, Lorenz A, Kundo N, Stuchinskaya T, Gogina L, Salanov A, Zaikonovskii V, Maizlish V, Shaposhnikov GP (1997) Cobalt phthalocyanine derivatives supported on TiO2 by sol-gel processing.1. Preparation and microstructure. Chem Ber/Recl 130:1585–1589

    Google Scholar 

  205. Hunter CA, Sanders KM (1990) The nature of π- π interactions. J Am Chem Soc 112:5525–5534

    Article  CAS  Google Scholar 

  206. Schneider G, Wöhrle D, Spiller W, Stark J, Schulz-Ekloff G (1998) Photooxidation of 2-Mercaptoethanol by various water soluble phthalocyanines in aqueous alkaline solution under irradiation with visible light. Photochem Photobiol 60:333–342

    Article  Google Scholar 

  207. Schlettwein D, Oekermann T, Yoshida T, Tochimoto M, Minoura H (2000) Photoelectrochemical sensitisation of ZnO-tetrasulfophthalocyaninatozinc composites prepared by electrochemical self-assembly. J Electroanal Chem 481:42–51

    Article  CAS  Google Scholar 

  208. Nüesch F, Moser JE, Shklover V, Grätzel M (1996) Merocyanine aggregation in mesoporous networks. J Am Chem Soc 118:5420–5431

    Article  Google Scholar 

  209. Oekermann T, Yoshida T, Schlettwein D, Sugiura T, Minoura H (2001) Photoelectrochemical properties of ZnO/tetrasulfophthalocyanine hybrid thin films prepared by electrochemical self-assembly. Phys Chem Chem Phys 3:3387–3392

    Article  CAS  Google Scholar 

  210. Schlettwein D, Oekermann T, Yoshida T, Sugiura T, Minoura H, Wöhrle D (2002) Electrochemically self-assembled ZnO/dye electrodes: preparation and time-resolved photoelectrochemical measurements. In: Kafafi ZH (ed) Organic photovoltaics II, Proceedings of SPIE vol 4465, The International Society for Optical Engineering, Bellingham, WA 2002, pp 113–122

    Google Scholar 

  211. Michaelis E, Nonomura K, Schlettwein D, Yoshida T, Minoura H, Wöhrle D (2004) Hybrid thin films of ZnO with porphyrins and phthalocyanines prepared by one-step electrodeposition. J Porphyrins Phthalocyanin 8:1366–1375

    Article  CAS  Google Scholar 

  212. Nonomura K, Loewenstein T, Michaelis E, Wöhrle D, Oekermann T, Yoshida T, Minoura H, Schlettwein D (2006) Photoelectrochemical characterization of electrodeposited ZnO thin films sensitized by porphyrins and phthalocyanines. Phys Chem Chem Phys 8:3867–3875

    Article  CAS  Google Scholar 

  213. Yoshida T, Iwaya M, Ando H, Oekermann T, Nonomura K, Schlettwein D, Wöhrle D, Minoura H (2004) Improved photoelectrochemical performance of electrodeposited ZnO/EosinY hybrid thin films by dye re-adsorption. Chem Commun 400–401

    Google Scholar 

  214. Yoshida T, Zhang JB, Komatsu D, Sawatani S, Minoura H, Pauporte T, Lincot D, Oekermann T, Schlettwein D, Tada H, Wöhrle D, Funabiki K, Matsui M, Miura H, Yanagi H (2009) Electrodeposition of inorganic/organic hybrid thin films. Adv Funct Mater 19:17–43

    Article  CAS  Google Scholar 

  215. Yoshida T, Terada K, Schlettwein D, Oekermann T, Sugiura T, Minoura H (2000) Electrochemical self-assembly of nanoporous ZnO/eosin Y thin films and their sensitized photoelectrochemical performance. Adv Mater 12:1214–1217

    Article  CAS  Google Scholar 

  216. Yoshida T, Oekermann T, Okabe K, Schlettwein D, Funabiki K, Minoura H (2002) Cathodic Electrodeposition of ZnO/eosinY hybrid thin films from dye added zinc nitrate bath and their photoelectrochemical characterizations. Electrochemistry 70:470–487

    CAS  Google Scholar 

  217. Ozoemena K, Kuznetsnova N, Nyokong T (2001) Photosensitized transformation of 4-chlorophenol in the presence of aggregated and non-aggregated metallophthalocyanines. J Photochem Photobiol, A 139:217–224

    Article  CAS  Google Scholar 

  218. Agboola B, Ozoemena KI, Nyokong T (2006) Comparative efficiency of immobilized non-transition metal phthalocyanine photosensitizers for the visible light transformation of chlorophenols. J Mol Catal A-Chem 248:84–92

    Article  CAS  Google Scholar 

  219. Idowu M, Loewenstein T, Hastall A, Nyokong T, Schlettwein D (2010) Photoelectrochemical characterization of electrodeposited ZnO thin films sensitized by octacarboxymetallophthalocyanine derivatives. J Porph Phthalocyanin 14:142–149

    Article  CAS  Google Scholar 

  220. Masilela N, Nombona N, Loewenstein T, Nyokong T, Schlettwein D (2010) Symmetrically and unsymmetrically substituted carboxy phthalocyanines as sensitizers for nanoporous ZnO films. J Porph Phthalocyanin 14:985–992

    Article  CAS  Google Scholar 

  221. Rostalski J, Meissner D (2000) Photocurrent spectroscopy for the investigation of charge carrier generation and transport mechanisms in organic p/n-junction solar cells. Sol Energy Mater Sol Cells 63:37–47

    Article  CAS  Google Scholar 

  222. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Plastic solar cells. Adv Mater 13:15–26

    Google Scholar 

  223. Yanagi H, Ashida M, Harima Y, Yamashita K (1990) Photoelectrochemical Properties of orientation-controlled thin film for 5,10,15,20-tetraphenylporphyrin. Chem Lett 385–388

    Google Scholar 

  224. Xue J, Uchida S, Rand B, Forrest SR (2004) Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Appl Phys Lett 85:5757–5759

    Article  CAS  Google Scholar 

  225. http://www.heliatek.com/wp-content/uploads/2013/01/130116_PR_Heliatek_achieves_record_cell_effiency_for_OPV.pdf. Accessed 29 Apr 2015

  226. Che X, Xiao X, Zimmerman JD, Fan D, Forrest SR (2014) High-efficiency, vacuum-deposited, small-molecule organic tandem and triple-junction photovoltaic cells. Adv Energy Mater 4:1400568

    Article  CAS  Google Scholar 

  227. Park SH, Roy A, Beaupré S, Cho S, Coates NS, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100 %. Nat Photonics 3:297–302

    Google Scholar 

  228. Liang Y, Xu Z, Xia J, Tsai S-T, Wu Y, Li G, Ray C, Yu L (2010) For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4 %. Adv Mater 22:E135–E138

    Article  CAS  Google Scholar 

  229. Susanna G, Salamandra L, Ciceroni C, Mura F, Brown TM, Reale A, Rossi M, Di Carlo A, Brunetti F (2015) 8.7 % power conversion efficiency polymer solar cell realized with non-chlorinated solvents. Sol Energy Mater Sol Cells 134:194–198

    Article  CAS  Google Scholar 

  230. Nguyen TL, Choi H, Ko S-J, Uddin MA, Walker B, Yum S, Jeong J-E, Yun MH, Shin TJ, Hwang S, Kim JY, Woo HY (2014) Semi-crystalline photovoltaic polymers with efficiency exceeding 9 % in a 300 nm thick conventional single-cell device. Energy Environ Sci 7:3040–3051

    Article  CAS  Google Scholar 

  231. You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C-C, Gao J, Li G, Yang Y (2012) A polymer tandem solar cell with 10.6 % power conversion efficiency. Nat Commun 4:1446

    Google Scholar 

  232. Chen C-C, Chang W-H, Yoshimura K, Ohya K, You J, Gao J, Hong Z, Yang Y (2014) An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11 %. Adv Mater 26:5670–5677

    Article  CAS  Google Scholar 

  233. Yusoff ARBM, Kim D, Kim HP, Shneider FK, da Silva WJ, Jang J (2015) A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83 %. Energy Environ Sci 8:303–316

    Google Scholar 

  234. Zhou R, Josse F, Göpel W, Öztürk ZZ, Bekaroglu Ö (1996) Phthalocyanines as sensitive materials for chemical sensors. Appl Organomet Chem 10:557–577

    Article  CAS  Google Scholar 

  235. Mabeck JT, Malliaras GG (2006) Chemical and biological sensors based on organic thin-film transistors. Anal Bional Chem 384:343–353

    Article  CAS  Google Scholar 

  236. Waite S, Pankow J, Collins GE, Lee PA, Armstrong NR (1989) Interactions of ammonia and oxygen with the surfaces of chlorogallium phthalocyanine thin films: microcircuit photoconductivity and quartz-crystal microgravimetry studies. Langmuir 5:797–805

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to T. Yoshida (Yamagata University, Japan) and to T. Nyokong (Rhodes University, South Africa) for numerous fruitful discussions in the course of recent joint work on dye-sensitized solar cells , to the German Academic Exchange Service (DAAD) for partial sponsorship of the work and to a number of students and visiting researchers in the author’s group who performed parts of the experimental work reviewed in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derck Schlettwein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schlettwein, D. (2016). Photoelectrochemical Reactions at Phthalocyanine Electrodes. In: Zagal, J., Bedioui, F. (eds) Electrochemistry of N4 Macrocyclic Metal Complexes. Springer, Cham. https://doi.org/10.1007/978-3-319-31172-2_7

Download citation

Publish with us

Policies and ethics