Skip to main content

Theoretical Aspects of the Reactivity of MN4 Macrocyclics in Electrochemical Reactions

  • Chapter
  • First Online:
Electrochemistry of N4 Macrocyclic Metal Complexes

Abstract

We studied the electronic features of different adsorption and catalytic processes of some transition metal macrocyclic complexes (phthalocyanine) with Fe being the usual metal center. For oxygen molecule on iron phthalocyanine (FePc), both end-on and side-on configurations are found to be energetically favorable. However, the end-on adsorption configurations are more stable than side-on configurations. The activation barrier for the O–O bind cleavage for the side-on MN4-O2 configuration is lower than that for the end-on MN4-O2 configuration. On the other hand, we have built theoretical models based on DFT calculations from the formation of self-assembled monolayers (SAM) on a gold substrate and a thiolate ligand as an “anchoring” fragment of metallophtalocyanine, which leads to an interesting charge donation from the 4-aminothiophenol (4-ATP), 4-MP (4-mercaptopyridine) and 1-(4-mercaptophenyl)-2, 6-diphenyl-4- (4-pyridyl)pyridinium tetrafluoroborate (MDPP) towards both gold substrate, Au(111) surface, and phthalocyanine, denoting an effective gold-MPc interaction mediated by the titled anchor ligands. The electrocatalytic studies carried out with Au/4-ATP/FePc and Au/MDPP/FePc electrodes show that the O2 reduction takes place by the transfer of 4-electron to give water in contrast to a 2-electron transfer process observed for the bare gold. Theoretical calculations suggest the importance of the backbonding mechanism into the adduct formation, showing the relevance of the supporting gold surface on the electron-transfer process mediated by anchoring ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon Press, Oxford

    Google Scholar 

  2. Herzberg G (1991) Spectra and molecular structure. Electronic spectra and electronic structure of polyatomic molecules, vol III. Krieger, Malabar, FL

    Google Scholar 

  3. Bunker PR, Jensen P (2000) Computational molecular spectroscopy. Wiley

    Google Scholar 

  4. Lehn J-M (2007) From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem Soc Rev 36:151–160

    Article  CAS  Google Scholar 

  5. Scheider H-J (2009) Binding mechanisms in supramolecular complexes. Angew Chem Int Ed 48:3924–3977

    Article  CAS  Google Scholar 

  6. Smulders M, Riddell I, Browne C, Nitschke JR (2013) Building on architectural principles for three-dimensional metallosupramolecular construction. J Chem Soc Rev 42:1728–1735

    Article  CAS  Google Scholar 

  7. Lehn J-M (2004) Supramolecular chemistry: from molecular information towards self-organization and complex. Rep Prog Phys 64:249–265

    Article  Google Scholar 

  8. Chalasinski G, Szczesniak MM (2000) State of the art and challenges of the ab initio theory of intermolecular interactions. Chem Rev 100:4227–4252

    Article  CAS  Google Scholar 

  9. Braga D, Grepioni F (2000) Intermolecular interactions in nonorganic crystal engineering. Acc Chem Res 33:601–608

    Article  CAS  Google Scholar 

  10. Buckingham AD (1978) Basic theory of intermolecular forces: applications to small molecules. In: Pullman B (ed) Intermolecular interactions: from diatomics to biopolymers. Wiley, Chichester, pp 1–67

    Google Scholar 

  11. Hoeben FJM, Jonkheijm P, Meijer EW, Schennig APH (2005) About supramolecular assemblies of π-conjugated systems. Chem Rev 105:1491–1546

    Article  CAS  Google Scholar 

  12. Stone AJ (1996) The theory of intermolecular forces. Clarendon Press, Oxford

    Google Scholar 

  13. Lehn J-M, Atwood JL, Davies JED, MacNicol DD, Vögtle G (1996) Comprehensive supramolecular chemistry. Pergamon, Oxford

    Google Scholar 

  14. Desiraju GR (2010) Crystal engineering: a brief overview. J Chem Sci 122:667–680

    Article  CAS  Google Scholar 

  15. Mati IK, Cockroft SL (2010) Molecular balances for quantifying non-covalent interactions. Chem Soc Rev 39:4195–4202

    Article  CAS  Google Scholar 

  16. Oshovsky G, Reinhoudt D, Verboom W (2007) Supramolecular chemistry in water. Angew Chem Int Ed 46:2366–2393

    Article  CAS  Google Scholar 

  17. Kinge S, Crego-Calama M, Reinhoudt DN (2008) Self-assembling nanoparticles at surfaces and interfaces. Chem Phys Chem 9:20–42

    CAS  Google Scholar 

  18. Otero R, Gallego J, Vázquez de Parda A, Marín N, Miranda R (2011) Molecular self-assembly at solid surfaces. Adv Mater 23:5148–5176

    Article  CAS  Google Scholar 

  19. Bonifazi D, Mohnani S, Llanes-Pallas A (2009) Supramolecular chemistry at interfaces: molecular recognition on nanopatterned porous surfaces. Chem Eur J 15:7004–7025

    Article  CAS  Google Scholar 

  20. Grätzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42:1788–1798

    Article  CAS  Google Scholar 

  21. Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F (2010) Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord Chem Rev 254:2755–2791

    Article  CAS  Google Scholar 

  22. Aakeröy CB, Champness NR, Janiak C (2010) Recent advances in crystal engineering. Cryst Eng Comm 12:22–35

    Article  Google Scholar 

  23. Braga D, Grepioni F (2005) Making crystals from crystals: a green route to crystal engineering and polymorphism. Chem Commun 41:3635–3645

    Article  CAS  Google Scholar 

  24. Pensa E, Cortés E, Corthey G, Carro P, Vericat C, Salvarezza R (2012) The chemistry of the sulfur-gold interface. in search of a unified model. Acc Chem Res 45:1183–1192

    Article  CAS  Google Scholar 

  25. Mandler D, Krauss-Ophir S (2011) Self-assembled monolayers (SAMs) for electrochemical sensing. J Sold State Electrochem 15:1535–1558

    Article  CAS  Google Scholar 

  26. Yamanoi Y, Nishihara N (2007) Assembly of nanosize metallic particles and molecular wires on electrode surfaces. Chem Commun 43:3983–3989

    Article  CAS  Google Scholar 

  27. Thompson D, Hermes JP, Quinn AJ, Mayor M (2012) Scanning the potential energy surface for synthesis of dendrimer-wrapped gold clusters: design rules for true single-molecule nanostructures. ACSNano 6:3007–3017

    CAS  Google Scholar 

  28. Häkkinen H (2012) The gold-sulfur interface at the nanoscale. Nat Chem 4:443–455

    Article  CAS  Google Scholar 

  29. Katiuce S, Codorin S, Pacheco T, Neves A, Cruz I (2009) Self-assembled monolayer of nickel (II) complex and thiol on gold electrode for the determination of catechin. Talanta 78:1063–1068

    Article  CAS  Google Scholar 

  30. Agboola BO, Ozoemena KI (2008) Self-assembly and heterogeneous electron transfer properties of metallo-octacarboxyphthalocyanine complexes on gold electrode. Phys Chem Chem Phys 10:2399–2408

    Article  CAS  Google Scholar 

  31. Silvanesan A, John SA (2008) Amino group positions dependent morphology and coverage of electropolymerized metallophthalocyanine (M = Ni and Co) films on electrode surfaces. Electrochim Acta 53:6629–6635

    Article  CAS  Google Scholar 

  32. Agboola B, Nyokong T (2007) Comparative electrooxidation of nitrite by electrodeposited Co(II), Fe(II) and Mn(III) tetrakis (benzylmercapto) and tetrakis (dodecylmercapto) phthalocyanines on gold electrodes. Anal Chim Acta 587:116–123

    Article  CAS  Google Scholar 

  33. Agboola B, Nyokong T (2007) Comparative electrooxidation of sulphite by self-assembled monolayers (SAMs) of Co(II), Fe(II), Ni(II) and Mn(III) tetrakis benzylmercapto and dodecylmercapto metallophthalocyanines complexes on gold electrodes. Talanta 72:691–698

    Article  CAS  Google Scholar 

  34. Mashazi P, Westbroek P, Ozoemena K, Nyokong T (2007) Surface chemistry and electrocatalytic behaviour of tetra-carboxy substituted iron, cobalt and manganese phthalocyanine monolayers on gold electrode. Electrochim Acta 53:2007–2015

    Article  CAS  Google Scholar 

  35. Ponce I, Silva JF, Oñate R, Miranda-Rojas S, Muñoz-Castro A, Arratia-Pérez R, Mendizabal F, Zagal JH (2011) Theoretical and experimental study of bonding and optical properties of self-assembly metallophthalocyanines complexes on a gold surface. A survey of the substrate-surface interaction. J Phys Chem C 115:23512–23518

    Article  CAS  Google Scholar 

  36. Ponce I, Silva J, Oñate R, Rezende M, Paez M, Pavez J, Zagal JH (2011) Enhanced catalytic activity of Fe phthalocyanines linked to Au(111) via conjugated self-assembled monolayers of aromatic thiols for O2 reduction. Electrochem Commun 13:1182–1185

    Article  CAS  Google Scholar 

  37. Erdogmus A, Booysen I, Nyokong T (2011) Synthesis and electrochemical properties of new tetra substituted cobalt phthalocyanine complexes, and their application in electrode modification for the electrocatalysis of l-cysteine. Synth Met 161:241–250

    Article  CAS  Google Scholar 

  38. Silva C, Pavez J, Silva JF, Sancy M, Guerrero J, Paez M, Zagal JH (2010) Electrochemical transducer based on nanostructured polyaniline films obtained on functionalized self assembled monolayers of 4-aminothiophenol. Mol Cryst Liq Cryst 522:112–124

    Article  CAS  Google Scholar 

  39. Bedioui F, Nyokong T, Appleby A, Caro C, Gulppi M, Zagal JH (2007) Tuning the redox properties of metalloporphyrin-and metallophthalocyanine-based molecular electrodes for the highest electrocatalytic activity in the oxidation of thiols. Phys Chem Chem Phys 9:3383–3396

    Article  CAS  Google Scholar 

  40. Ciofini I, Bedioui F, Zagal J, Adamo C (2003) Environment effects on the oxidation of thiols: cobalt phthalocyanine as a test case. Chem Phys Lett 376:690–696

    Article  CAS  Google Scholar 

  41. Love J, Estroff L, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170

    Article  CAS  Google Scholar 

  42. Cão R, Díaz-García AM, Cão R (2009) Coordination compounds built on metal surfaces. Coord Chem Rev 253:1262–1275

    Article  CAS  Google Scholar 

  43. Hättig C, Weigend F (2000) CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. J Chem Phys 113:5154–5164

    Article  Google Scholar 

  44. Christiansen C, Koch H, Jørgensen P (1995) The second-order approximate coupled cluster singles and doubles model CC2. Chem Phys Letter 243:409–418

    Article  CAS  Google Scholar 

  45. Send R, Sundholm D (2007) Coupled-cluster studies of the lowest excited states of the 11-cis-retinal chromophore. Phys Chem Chem Phys 9:2862–2867

    Article  CAS  Google Scholar 

  46. Winter NOC, Hättig C (2012) Benchmarks for 0–0 transitions of aromatic organic molecules: DFT/B3LYP, ADC (2), CC2, SOS-CC2 and SCS-CC2 compared to high-resolution gas-phase data. Chem Phys 401:217–224

    Article  CAS  Google Scholar 

  47. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  48. Casida M (1995) Recent advances in density functional methods (I). Ed Chong D, World Scientific, pp 155–170

    Google Scholar 

  49. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  50. Ozoemena K, Nyokong T (2006) Comparative electrochemistry and electrocatalytic activities of cobalt, iron and manganese phthalocyanine complexes axially co-ordinated to mercaptopyridine self-assembled monolayer at gold electrodes. Electrochim Acta 51:2669–2677

    Article  CAS  Google Scholar 

  51. Ponce I, Silva JF, Oñate R, Rezende MC, Paez MA, Zagal JH, Pavez J, Mendizabal F, Miranda-Rojas S, Muñoz-Castro A, Arratia-Pérez R (2012) Enhancement of the catalytic activity of Fe Phthalocyanine for the reduction of O2 anchored to Au(111) via conjugated self-assembled monolayers of aromatic thiols As compared to Cu Phthalocyanine. J Phys Chem C 116:15329–15341

    Article  CAS  Google Scholar 

  52. Sancy M, Pavez J, Gulppi MA, de Mattos IL, Arraria-Perez R, Linares-Flores C, Paez M, Nyokong T, Zagal JH (2011) Optimizing the electrocatalytic activity of surface confined Co macrocyclics for the electrooxidation of thiocyanate at pH 4. Electroanalysis 23:711–718

    CAS  Google Scholar 

  53. Linares-Flores C, Mac-LeadCarey D, Muñoz-Castro A, Zagal JH, Pavez J, Pino-Riffo D, Arratia-Pérez R (2012) Reinterpreting the role of the catalyst formal potential. The case of thiocyanate electrooxidation catalyzed by CoN4-macrocyclic complexes. J Phys Chem C 116:7091–7098

    Article  CAS  Google Scholar 

  54. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system turbomole. Chem Phys Lett 162:165–169

    Article  CAS  Google Scholar 

  55. Amsterdam Density Functional (ADF) Code (2010) Vrije Universiteit, Amsterdam, The Netherlands

    Google Scholar 

  56. Johansson MP, Lechtken A, Schooss Kappes MM, Furche F (2008) 2D-3D transition of gold cluster anions resolved. Phys Rev A 77:053202–053208

    Article  CAS  Google Scholar 

  57. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104(1)–154104(10)

    Google Scholar 

  58. Hujo W, Grimme S (2011) Performance of the van der Waals density functional VV10 and (hybrid) GGA variants for thermochemistry and noncovalent interactions. J Chem Theory Comput 7:3866–3871

    Article  CAS  Google Scholar 

  59. Grimme S (2012) On the accuracy of DFT methods in reproducing ligand substitution energies for transition metal complexes in solution: the role of dispersive interactions. Chem Phys Chem 13:1407–1409

    CAS  Google Scholar 

  60. Andrae D, Häusserman M, Dolg H, Stoll H, Preuss H (1990) Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theor Chim Acta 77:12–25

    Article  Google Scholar 

  61. Bergner A, Dolg M, Küchle W, Stoll H, Preuss H (1993) Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol Phys 80:1431–1441

    Article  CAS  Google Scholar 

  62. Dunning T, Hay P (1997) Modern theoretical chemistry, vol 3. Ed. H. Schaefer, Plenum Press, pp 1–28

    Google Scholar 

  63. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  64. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from timedependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439–4449

    Article  CAS  Google Scholar 

  65. Olsen L, Jϕrgensen P (1995) In modern electronic structure theory, vol 2. Ed. D.R. Yarkony, World Scientific, River Edge, NJ

    Google Scholar 

  66. te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca-Guerra C, van Gisbergen JA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Article  Google Scholar 

  67. Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree Fock Slater method. Theor Chim Acta 46:1–10

    Article  CAS  Google Scholar 

  68. Eremtchenko M, Schaefer JA, Tautz FS (2003) Understanding and tuning the epitaxy of large aromatic adsorbates by molecular design. Nature 425:602–605

    Article  CAS  Google Scholar 

  69. Li ZY, Li B, Yang JL, Hou JG (2010) Single-molecule chemistry of metal phthalocyanine on noble metal surfaces. Acc Chem Res 43:954–962

    Article  CAS  Google Scholar 

  70. Wang Y, Wu K, Kröger J, Berndt R (2012) Structures of phthalocyanine molecules on surfaces studied by STM. Advances 2:041402–041412

    Google Scholar 

  71. Lu X, Hipps KW, Wang XD, Mazur U (1996) Scanning tunneling microscopy of metal Phthalocyanines: d7 and d9 cases. J Am Chem Soc 118:7197–7202

    Article  CAS  Google Scholar 

  72. Gao L, Ji W, Hu YB, Cheng ZH, Deng ZT, Liu Q, Lin X, Guo W, Du SX (2007) Site-specific Kondo effect at ambient temperatures in iron-based molecules. Phys Rev Lett 99:106402–106406

    Article  CAS  Google Scholar 

  73. Betti MG, Gargiani P, Frisenda R, Biagi R, Cossaro A, Verdini A, Floreano L, Mariani C (2010) Localized and dispersive electronic states at ordered FePc and CoPc chains on Au(110). J Phys Chem C 114:21638–21644

    Article  CAS  Google Scholar 

  74. Kroger L, Stadtmuller B, Kleimann C, Pajpunt P, Kumpf C (2011) Normal-incidence x-ray standing-wave study of copper phthalocyanine submonolayers on Cu(111) and Au(111). Phys Rev B 83:195414–195422

    Article  CAS  Google Scholar 

  75. Stepanow S, Rizzini AL, Krull C, Kavich J, Cezar JC, Yakhou-Harris F, Sheverdyaeva PM, Moras P, Carbone C, Ceballos G (2014) Spin tuning of electron-doped metal-Phthalocyanine layers. J Am Chem Soc 136:5451–5459

    Article  CAS  Google Scholar 

  76. Tsukahara N, Shiraki S, Itou S, Ohta N, Takagi N, Kawai M (2011) Evolution of Kondo resonance from a single impurity molecule to the two-dimensional lattice. Phys Rev Lett 106:187201–187205

    Article  CAS  Google Scholar 

  77. Minamitani E, Tsukahara N, Matdunaka D, Kim Y, Takagi N, Kawai M (2012) Symmetry-driven novel Kondo effect in a molecule. Phys Rev Lett 109:086602–086606

    Article  CAS  Google Scholar 

  78. Zhang L, Cheng Z, Huan Z, He X, Lin X, Gao L, Deng Z, Jiang N, Liu Q, Du S, Guo H, Gao H-J (2011) Site- and configuration-selective anchoring of iron-Phthalocyanine on the Step Edges of Au(111) surface. J Phys Chem C 115:10791–10796

    Article  CAS  Google Scholar 

  79. Jiang YH, Xiao WD, Liu LW, Zhang LZ, Lian JC, Yang K, Du SX, Gao H-J (2015) Self-assembly of metal Phthalocyanines on Pb(111) and Au(111) surfaces at submonolayer coverage. J Phys Chem C 115:21750–21754

    Article  CAS  Google Scholar 

  80. Jiang N, Zhang YY, Liu Q, Deng ZH, Deng ZT, Du S, Gao HJ, Beck M, Pantelides ST (2010) Diffusivity control in molecule-on-metal systems using electric fields. Nano Lett 10:1184–1188

    Article  CAS  Google Scholar 

  81. Liu Q, Zhang YY, Jiang N, Zhang HG, Gao L, Du SS, Gao HJ (2010) Identifying multiple configurations of complex molecules in dynamical processes: time resolved tunneling spectroscopy and density functional theory calculation. Phys Rev Lett 104:166101–166105

    Article  CAS  Google Scholar 

  82. Zhang YY, Du SX, Gao H-J (2011) Binding configuration, electronic structure, and magnetic properties of metal phthalocyanines on a Au(111) surface studied with ab initio calculations. Phys Rev B 84:125446–125454

    Article  CAS  Google Scholar 

  83. Li S, Hao J, Li F, Niu Z, Hu Z, Zhang L (2014) The key role of van der Waals interactions in MPc/Au(111) (M = Co, Fe, H2) systems based on first-prinzciples calculations. J Phys Chem C 118:27843–27849

    Article  CAS  Google Scholar 

  84. Vasudevan P, Santosh N, Mann N, Tyagi S (1990) Transition metal complexes of porphyrins and phthalocyanines as electrocatalysts for dioxygen reduction. Transit Met Chem 15:81–90

    Article  CAS  Google Scholar 

  85. Zagal JH (1992) Metallophthalocyanines as catalysts in electrochemical reactions. Coord Chem Rev 119:89–136

    Article  CAS  Google Scholar 

  86. Lipkowski J, Ross PN (1998) Electrocatalysis. Wiley

    Google Scholar 

  87. Zagal JH (2010) Macrocycles in handbook of fuel cells. Wiley, pp 1–12

    Google Scholar 

  88. Li Z, Liu B (2010) The use of macrocyclic compounds as electrocatalysts in fuel cells. J Appl Electrochem 40:475–483

    Article  CAS  Google Scholar 

  89. Zagal JH, Silva JF (2006) Páez M. In: Zagal JH, Bedioui F, Dodelet JP (eds) N4-macrocyclic metal complexes. New York, Springer, pp 41–82

    Chapter  Google Scholar 

  90. Alkire RC, Kolb DM, Lipkowski J, Ross P (2008) Electrochemical surface modification: thin films, functionalization and characterization. Wiley

    Google Scholar 

  91. Dodelet JP, Zagal JH, Bedioui F, Dodelet JP (eds) (2006) N4-macrocyclic metal complexes. Springer, New York, pp 83–147

    Google Scholar 

  92. Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim Acta 53:4937–4951

    Article  CAS  Google Scholar 

  93. Bashuam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nature 443:63–66

    Article  CAS  Google Scholar 

  94. Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 22:443–447

    Article  CAS  Google Scholar 

  95. Chlistunoff J (2011) RRDE and voltammetric study of ORR on pyrolyzed Fe/Polyaniline catalyst. on the origins of variable Tafel Slopes. J Phys Chem C 115:6496–6507

    Article  CAS  Google Scholar 

  96. Othman R, Dicks AL, Zhu Z (2012) Non precious metal catalysts for the PEM fuel cell cathode. Int J Hydrogen Energy 37:357–372

    Article  CAS  Google Scholar 

  97. Wood TE, Tan Z, Schmoeckel AK, O’Neill D, Atanasoski R (2008) Non-precious metal oxygen reduction catalyst for PEM fuel cells based on nitroaniline precursor. J Power Sources 178:510–516

    Article  CAS  Google Scholar 

  98. Jaouen F, Herranz J, Lefrevre JM, Dodelet J-P, Kramm UI, Herrmann I, Bogdanoff P, Maruyama J, Nagaoka T, Garsuch A, Dahn JR, Olson T, Pylypenko S, Atanassov P, Ustinov EA (2009) Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. Appl Mater Interfaces 1:1623–1639

    Article  CAS  Google Scholar 

  99. Zagal JH, Ponce I, Baez D, Venegas R, Pavez J, Paez M, Gulppi M (2012) A possible interpretation for the high catalytic activity of heat-treated non-precious metal Nx/C catalysts for O2 reduction in terms of their formal potentials. Electrochem Solid-State Lett 15:B90–B92

    Article  CAS  Google Scholar 

  100. Baker R, Wilkinson DP, Zhang J (2009) Facile synthesis, spectroscopy and electrochemical activity of two substituted iron phthalocyanines as oxygen reduction catalysts in an acidic environment. Electrochim Acta 54:3098–3102

    Article  CAS  Google Scholar 

  101. van den Brink F, Barendrecht E, Visscher W (1980) The cathodic reduction of oxygen: A review with emphasis on macrocyclic organic metal complexes as electrocatalysts. Recl Trav Chim Pays-Bas 99:253–262

    Article  Google Scholar 

  102. Tarasevich KAR (1986) Electrocatalytic properties of pyrolytic polymers produced from N-4-complexes. Elektrokhimiya 22:1155–1170

    Google Scholar 

  103. Yeager E (1984) Electrocatalysts for O2 reduction. Electrochim Acta 29:1527–1537

    Article  CAS  Google Scholar 

  104. Zurilla RW, Sen RK, Yeager E (1978) The kinetics of the oxygen reduction reaction on gold in alkaline solution. J Electrochem Soc 125:1103–1109

    Article  CAS  Google Scholar 

  105. Damjanovic A, Genshaw MA, Bockris JOM (1967) The role of electrochemistry in environmental control. J Electroanal Chem Int Electrochem 15:173–180

    Article  CAS  Google Scholar 

  106. Zagal J, Bindra P, Yeager E (1980) A mechanistic study of O2 reduction on water soluble phthalocyanines adsorbed on graphite electrodes. J Electrochem Soc 127:1506–1517

    Article  CAS  Google Scholar 

  107. Zagal JH, Páez M, Tanaka AA, dos Santos JR, Linkous C (1992) Electrocatalytic activity of metal phthalocyanines for oxygen reduction. J Electroanal Chem 339:13–30

    Article  CAS  Google Scholar 

  108. Shi Z, Zhang J (2007) Density functional theory study of transitional metal macrocyclic complexes’ dioxygen-binding abilities and their catalytic activities toward oxygen reduction reaction. J Phys Chem C 111:7084–7090

    Article  CAS  Google Scholar 

  109. Wang G, Ramesh N, Hsu A, Chu D, Chen R (2008) Density functional theory study of the adsorption of oxygen molecule on iron phthalocyanine and cobalt phthalocyanine. Mol Simulat 34:1051–1056

    Article  CAS  Google Scholar 

  110. Chen R, Li H, Chu D, Wang G (2009) Unraveling oxygen reduction reaction mechanisms on carbon-supported fe-phthalocyanine and Co-phthalocyanine catalysts in alkaline solutions. J Phys Chem C 113:20689–20697

    Article  CAS  Google Scholar 

  111. Sun S, Jiang N, Xia D (2011) Density functional theory study of the oxygen reduction reaction on metalloporphyrins and metallophthalocyanines. J Phys Chem C 115:9511–9517

    Article  CAS  Google Scholar 

  112. Within the Morokuma-Zigler scheme, the ΔEorb represent 70.2% of the total stabilizing energy (calculated as ΔEorb/(ΔVelstat + ΔEorb)%)

    Google Scholar 

  113. Jakobsche CE, Choudhary A, Miller SJ, Raines RT (2010) n → π* interaction and n)(π pauli repulsion are antagonistic for protein stability. J Am Chem Soc 132:6651–6653

    Article  CAS  Google Scholar 

  114. Bendtsen AB, Hansen EH (1991) Spectrophotometric flow injection determination of trace amounts of thiocyanate based on its reaction with 2-(5-Bromo-2-pyridylazo)-5-diethylaminophenol and dichromate: assay of the Thiocyanate level in saliva from smokers and non-smokers. Analyst 116:647–651

    Article  CAS  Google Scholar 

  115. Michigami Y, Fujii K, Ueda K, Yamamoto Y (1992) Determination of thiocyanate in human saliva and urine by ion chromatography. Analyst 117:1855–1858

    Article  CAS  Google Scholar 

  116. Tamosiunas V, Padarauskas A, Pranaityté B (2006) Convenient synthesis of novel tetrahydro-1, 5-benzodiazepine amide oximes. Chemija 17:21–24

    CAS  Google Scholar 

  117. Cox JA, Gray T, Kulkarni KR (1988) Stable modified electrodes for flow-injection amperometry: application to the determination of thiocyanate. Anal Chem 60:1710–1713

    Article  CAS  Google Scholar 

  118. Gao D, Li J-Z, Yu R-Q, Zheng G-D (1994) Metalloporphyrin derivatives as neutral carriers for PVC membrane electrodes. Anal Chem 66:2245–2249

    Article  CAS  Google Scholar 

  119. Amini MK, Shahrokhian S, Tangestaninejad S (1999) PVC-based cobalt and manganese phthalocyanine coated graphite electrodes for determination of thiocyanate. Anal Lett 32:2737–2750

    Article  CAS  Google Scholar 

  120. Amini MK, Shahrokhian S, Tangestaninejad S (1999) Thiocyanate-selective electrodes based on nickel and iron phthalocyanines. Anal Chim Acta 402:137–143

    Article  CAS  Google Scholar 

  121. Kenova TA, Kormienko VL, Drozdov SV (2010) On electrochemical oxidation of thiocyanates in solutions for cyanidation of gold-containing ores and concentrates. Russ J Appl Chem 83:1589–1592

    Article  CAS  Google Scholar 

  122. Ozoemena KI, Nyokong T (2005) Surface electrochemistry of iron phthalocyanine axially ligated to 4-mercaptopyridine self-assembled monolayers at gold electrode: applications to electrocatalytic oxidation and detection of thiocyanate. J Electroanal Chem 579:283–289

    Article  CAS  Google Scholar 

  123. Vasudevan P, Phougat N, Shukla AK (1996) Metal phthalocyanines as electrocatalysts for redox reactions. Appl Organomet Chem 10:591–604

    Article  CAS  Google Scholar 

  124. Ozoemena KI, Nyokong T (2006) Comparative electrochemistry and electrocatalytic activities of cobalt, iron and manganese phthalocyanine complexes axially co-ordinated to mercaptopyridine self-assembled monolayer at gold electrodes. Electrochim Acta 51:2669–2677

    Article  CAS  Google Scholar 

  125. Zagal JH, Páez C (1989) Catalytic electrooxidation of 2-mercaptoethanol on a graphite electrode modified with metal—phthalocyanines. Electrochim Acta 34:243–247

    Article  CAS  Google Scholar 

  126. Griveau S, Pavez J, Zagal JH, Bedioui F. J Electroanal Chem 497:75–83

    Google Scholar 

  127. Griveau S, Bedioui F (2001) Electro-oxidation of 2-mercaptoethanol on adsorbed monomeric and electropolymerized cobalt tetra-aminophthalocyanine films. Effect of film thickness. Electroanal 13:253–256

    Article  CAS  Google Scholar 

  128. Griveau S, Albin V, Pauporté T, Zagal JH, Bedioui F (2002) Comparative study of electropolymerized cobalt porphyrin and phthalocyanine based films for the electrochemical activation of thiols. J Mater Chem 12:225–232

    Article  CAS  Google Scholar 

  129. Sehlotho N, Nyokong T (2006) Electrocatalytic oxidation of thiocyanate, L-cysteine and 2-mercaptoethanol by self-assembled monolayer of cobalt tetraethoxy thiophene phthalocyanine. Electrochim Acta 51:4463–4470

    Article  CAS  Google Scholar 

  130. Sancy M, Pavez J, Gulppi MA, Mattos IL, Arratia-Pérez R, Linares-Flores C, Paez M, Nyokong T, Zagal JH (2011) Optimizing the electrocatalytic activity of surface confined Co macrocyclics for the electrooxidation of thiocyanate at pH 4. Electroanal 23:711–718

    CAS  Google Scholar 

  131. Ozoemena KI, Nyokong T, Westbroek P (2003) Self-assembled monolayers of cobalt and iron phthalocyanine complexes on gold electrodes: comparative surface electrochemistry and electrocatalytic interaction with thiols and thiocyanate. Electroanal 15:1762–1770

    Article  CAS  Google Scholar 

  132. Figlar JN, Stanbury DM (2000) Thiocyanogen as an intermediate in the oxidation of thiocyanate by hydrogen peroxide in acidic aqueous solution. Inorg Chem 39:5089–5094

    Article  CAS  Google Scholar 

  133. Liu L, Feng J, Wu G, Lü X, Gao Q (2009) Dynamical complexity in electrochemical oxidations of thiocyanate. Chin J Chem 27:649–654

    Article  CAS  Google Scholar 

  134. Gauguin R (1951) Oxydation électrochimique de l’ion thiocyanique. Application aux dosages et ä l’étude des réactions. Anal Chim Acta 5:200–214

    Article  CAS  Google Scholar 

  135. Wilson IR, Harris GM (1961) The oxidation of thiocyanate ion by hydrogen peroxide. II. The acid-catalyzed reaction. J Am Chem Soc 83:286–289

    Article  CAS  Google Scholar 

  136. Stedman G, Whincup PA (1969) Acidic aqueous decomposition of thiocyanogen. J Chem Soc 25:1145–1148

    Article  Google Scholar 

  137. Itabashi E (1985) Spectroelectrochemical characterization of iron(III)-thiocyanate complexes in acidic thiocyanate solutions at an optically transparent thin-layer-electrode cell. Inorg Chem 24:4024–4027

    Article  CAS  Google Scholar 

  138. Modi S, Deodhar SS, Behere DV, Mitra S (1991) Horseradish peroxidase catalyzed oxidation of thiocyanate by hydrogen peroxide: comparison with lactoperoxidase-catalysed oxidation and role of distal histidine. Biochem 30:118–124

    Article  CAS  Google Scholar 

  139. Adak S, Mazumdar A, Banerjee K (1997) Low catalytic turnover of horseradish peroxidase in thiocyanate oxidation evidence for concurrent inactivation by cyanide generated through one-electron oxidation of thiocynate. J Biol Chem 272:11049–11056

    Article  CAS  Google Scholar 

  140. Ozoemena KI, Nyokong T (2005) Surface electrochemistry of iron phthalocyanine axially ligated to 4-mercaptopyridine self-assembled monolayers at gold electrode: applications to electrocatalytic oxid. Electroanal Chem 579:283–289

    Article  CAS  Google Scholar 

  141. Obirai J, Nyokong T (2005) Synthesis, electrochemical and electrocatalytic behaviour of thiophene-appended cobalt, manganese and zinc phthalocyanine complexes. Electrochim Acta 50:5427–5434

    Article  CAS  Google Scholar 

  142. Linares-Flores C, Mac-Leod D, Muñoz-Castro A, Zagal JH, Pavez J, Pino-Riffo D, Arratia-Pérez R (2012) Reinterpreting the role of the catalyst formal potential. the case of thiocyanate electrooxidation catalyzed by CoN4-macrocyclic complexes. J Phys Chem C 116:7091–7098

    Article  CAS  Google Scholar 

  143. Lever AB (1999) Palladium-catalyzed hydrogen reduction and decolorization of reactive phthalocyanine dyes. J Porphyr Phthal 3:488–499

    Article  CAS  Google Scholar 

  144. Alexiou C, Lever AB (2001) Tuning metalloporphyrin and metallophthalocyanine redox potentials using ligand electrochemical (EL) and Hammett (σp) parametrization. Coord Chem Rev 216:45–54

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by Millennium Nucleus RC120001, NC120082 and Fondecyt Projects 1140503, 1110758, 1150629, 3130383 and 1140359.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ramiro Arratia-Pérez or Fernando Mendizábal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miranda-Rojas, S., Muñoz-Castro, A., Arratia-Pérez, R., Mendizábal, F. (2016). Theoretical Aspects of the Reactivity of MN4 Macrocyclics in Electrochemical Reactions. In: Zagal, J., Bedioui, F. (eds) Electrochemistry of N4 Macrocyclic Metal Complexes. Springer, Cham. https://doi.org/10.1007/978-3-319-31172-2_5

Download citation

Publish with us

Policies and ethics