Skip to main content

Application of Scanning Electrochemical Microscopy (SECM) to Study Electrocatalysis of Oxygen Reduction by MN4-Macrocyclic Complexes

  • Chapter
  • First Online:
Electrochemistry of N4 Macrocyclic Metal Complexes

Abstract

N4-macrocyclic complexes are among the most widely investigated molecular materials for the oxygen reduction reaction (ORR). These complexes are attractive because they inherently provide well-defined structural models for describing the ORR not only in nature, for example, in cytochrome c oxidases, but also for electrocatalysts of industrial importance. The development of more efficient N4-macrocyclic complexes as electrocatalysts for the ORR requires in-depth understanding of the most crucial properties that govern their functionality. This goal necessitates employing advanced techniques and methods to accurately probe electrocatalytic behavior. This chapter covers a brief introduction of scanning electrochemical microscopy (SECM) and discusses its application for evaluation of the electrocatalytic behavior of materials, with particular focus on the ORR. A general overview of the benefits of using SECM as an alternative or as a complimentary technique to rotating-ring disk electrode (RRDE) voltammetry in studying the kinetics of the ORR is provided, with examples of this application dedicated to catalysts derived from MN4-macrocyclic complexes. The chapter also covers examples of the application of SECM as a semi-combinatorial and high-throughput tool for catalyst screening and development, and the evaluation of electrocatalysts at temperatures of industrial relevance. Discussion of some recent developments of the application of SECM, or SECM coupled to other auxiliary techniques, in electrocatalysis, for example, in probing electrolysis of individual nanoparticles, and a forecast of its potential future applications in both fundamental and applied science are included at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bard AJ, Fan FRF, Kwak J, Lev O (1989) Scanning electrochemical microscopy. Introd princ Anal Chem 61(2):132–138

    Article  CAS  Google Scholar 

  2. Wittstock G, Burchardt M, Pust SE, Shen Y, Zhao C (2007) Scanning electrochemical microscopy for direct imaging of reaction rates. Angew Chem Int Ed 46(10):1584–1617

    Article  CAS  Google Scholar 

  3. Sun P, Laforge FO, Mirkin MV (2007) Scanning electrochemical microscopy in the 21st century. Phys Chem Chem Phys 9(7):802–823

    Article  CAS  Google Scholar 

  4. Mirkin MV (2011) Scanning electrochemical microscopy in the 21st century. Update 1: five years after. Phys Chem Chem Phys 13:21196–21212

    Article  CAS  Google Scholar 

  5. Bard AJ, Mirkin MV (2012) Scanning electrochemical microscopy, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  6. Edwards MA, Martin S, Whitworth AL, Macpherson JV, Unwin PR (2006) Scanning electrochemical microscopy: principles and applications to biophysical systems. Physiol Meas 27(12):R63–108

    Article  Google Scholar 

  7. Fernández JL, Bard AJ (2004) Scanning electrochemical microscopy 50. Kinetic study of electrode reactions by the tip generation-substrate collection mode. Anal Chem 76(8):2281–2289

    Article  CAS  Google Scholar 

  8. Izquierdo J, Nagy L, González S, Santana JJ, Nagy G, Souto RM (2013) Resolution of the apparent experimental discrepancies observed between SVET and SECM for the characterization of galvanic corrosion reactions. Electrochem Commun 27:50–53

    Article  CAS  Google Scholar 

  9. Simões AM, Bastos AC, Ferreira MG, González-García Y, González S, Souto RM (2007) Use of SVET and SECM to study the galvanic corrosion of an iron–zinc cell. Corros Sci 49(2):726–739

    Article  CAS  Google Scholar 

  10. Sambur JB, Chen P (2014) Approaches to single-nanoparticle catalysis. Annu Rev Phys Chem 65:395–422

    Article  CAS  Google Scholar 

  11. Buurmans ILC, Weckhuysen BM (2012) Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat Chem 4(11):873–886

    Article  CAS  Google Scholar 

  12. Sun T, Yu Y, Zacher BJ, Mirkin MV (2014) Scanning electrochemical microscopy of individual catalytic nanoparticles. Angew Chem Int Ed 53(51):14120–14123

    Article  CAS  Google Scholar 

  13. Wittstock G (2001) Modification and characterization of artificially patterned enzymatically active surfaces by scanning electrochemical microscopy. Fresenius J Anal Chem 370(4):303–315

    Article  CAS  Google Scholar 

  14. Wei C, Bard AJ, Mirkin MV (1995) Scanning electrochemical microscopy. 31. Application of SECM to the study of charge transfer processes at the liquid/liquid interface. J Phys Chem 99(43):16033–16042

    Article  CAS  Google Scholar 

  15. Liu X, Ramsey MM, Chen X, Koley D, Whiteley M, Bard AJ (2011) Real-time mapping of a hydrogen peroxide concentration profile across a polymicrobial bacterial biofilm using scanning electrochemical microscopy. Proc Natl Acad Sci USA 108(7):2668–2673

    Article  CAS  Google Scholar 

  16. Beaulieu I, Kuss S, Mauzeroll J, Geissler M (2011) Biological scanning electrochemical microscopy and its application to live cell studies. Anal Chem 83(5):1485–1492

    Article  CAS  Google Scholar 

  17. Bergner S, Vatsyayan P, Matysik F (2013) Recent advances in high resolution scanning electrochemical microscopy of living cells–a review. Anal Chim Acta 775:1–13

    Article  CAS  Google Scholar 

  18. Kranz C (2014) Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques. Analyst 139(2):336–352

    Article  CAS  Google Scholar 

  19. Hussien EM, Schuhmann W, Schulte A (2010) Shearforce-based constant-distance scanning electrochemical microscopy as fabrication tool for needle-type carbon-fiber nanoelectrodes. Anal Chem 82(13):5900–5905

    Article  CAS  Google Scholar 

  20. Mandler D Micro- and nanopatterning using scanning electrochemical microscopy. In: Bard JA, Mirken MV (eds) Scanning electrochemical microscopy, 2nd edn. CRC Press, pp 489–524

    Google Scholar 

  21. Behm RJ (2015) Electrocatalysis on the nm scale. Beilstein J Nanotechnol 6:1008–1009

    Article  CAS  Google Scholar 

  22. Kasper C (1940) The theory of the potential and the technical practice of electrodeposition. Trans Electrochem Soc 78(1):147

    Article  Google Scholar 

  23. Engstrom RC, Weber M, Wunder DJ, Burgess R, Winquist S (1986) Measurements within the diffusion layer using a microelectrode probe. Anal Chem 58(4):844–848

    Article  CAS  Google Scholar 

  24. Engstrom RC, Meaney T, Tople R, Wightman RM (1987) Spatiotemporal description of the diffusion layer with a microelectrode probe. Anal Chem 59(15):2005–2010

    Article  CAS  Google Scholar 

  25. McKelvey K, Edwards MA, Unwin PR (2010) Intermittent contact-scanning electrochemical microscopy (IC-SECM): a new approach for tip positioning and simultaneous imaging of interfacial topography and activity. Anal Chem 82(15):6334–6337

    Article  CAS  Google Scholar 

  26. Lazenby RA, McKelvey K, Unwin PR (2013) Hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM): visualizing interfacial reactions and fluxes from surfaces to bulk solution. Anal Chem 85(5):2937–2944

    Article  CAS  Google Scholar 

  27. Cortés-Salazar F, Träuble M, Li F, Busnel J, Gassner A, Hojeij M, Wittstock G, Girault HH (2009) Soft stylus probes for scanning electrochemical microscopy. Anal Chem 81(16):6889–6896

    Article  CAS  Google Scholar 

  28. Macpherson JV, Unwin PR (2000) Combined scanning electrochemical—atomic force microscopy. Anal Chem 72(2):276–285

    Article  CAS  Google Scholar 

  29. Kranz C, Friedbacher G, Mizaikoff B, Lugstein A, Smoliner J, Bertagnolli E (2001) Integrating an ultramicroelectrode in an AFM cantilever. Combined technology for enhanced information. Anal Chem 73(11):2491–2500

    Article  CAS  Google Scholar 

  30. O’Connell MA, Wain AJ (2015) Combined electrochemical-topographical imaging. A critical review. Anal Methods. doi:10.1039/c5ay00557d

    Google Scholar 

  31. Hengstenberg A, Kranz C, Schuhmann W (2000) Facilitated tip-positioning and applications of non-electrode tips in scanning electrochemical microscopy using a shear force based constant-distance mode. Chem Eur J 6(9):1547–1554

    Article  CAS  Google Scholar 

  32. Nebel M, Eckhard K, Erichsen T, Schulte A, Schuhmann W (2010) 4D shearforce-based constant-distance mode scanning electrochemical microscopy. Anal Chem 82(18):7842–7848

    Article  CAS  Google Scholar 

  33. Hansma P, Drake B, Marti O, Gould S, Prater C (1989) The scanning ion-conductance microscope. Science 243(4891):641–643

    Article  CAS  Google Scholar 

  34. Comstock DJ, Elam JW, Pellin MJ, Hersam MC (2010) Integrated ultramicroelectrode-nanopipet probe for concurrent scanning electrochemical microscopy and scanning ion conductance microscopy. Anal Chem 82(4):1270–1276

    Article  CAS  Google Scholar 

  35. Takahashi Y, Shevchuk AI, Novak P, Zhang Y, Ebejer N, Macpherson JV, Unwin PR, Pollard AJ, Roy D, Clifford CA, Shiku H, Matsue T, Klenerman D, Korchev YE (2011) Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces. Angew Chem Int Ed 50(41):9638–9642

    Article  CAS  Google Scholar 

  36. Snowden ME, Güell AG, Lai SCS, McKelvey K, Ebejer N, O’Connell MA, Colburn AW, Unwin PR (2012) Scanning electrochemical cell microscopy: theory and experiment for quantitative high resolution spatially-resolved voltammetry and simultaneous ion-conductance measurements. Anal Chem 84(5):2483–2491

    Article  CAS  Google Scholar 

  37. Lai SCS, Patel AN, McKelvey K, Unwin PR (2012) Definitive evidence for fast electron transfer at pristine basal plane graphite from high-resolution electrochemical imaging. Angew Chem Int Ed 51(22):5405–5408

    Article  CAS  Google Scholar 

  38. Katsounaros I, Cherevko S, Zeradjanin AR, Mayrhofer KJJ (2014) Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew Chem Int Ed 53(1):102–121

    Article  CAS  Google Scholar 

  39. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56(1–2):9–35

    Article  CAS  Google Scholar 

  40. Spendelow JS, Wieckowski A (2007) Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys 9(21):2654–2675

    Article  CAS  Google Scholar 

  41. Yeager E (1984) Electrocatalysts for O2 reduction. Electrochim Acta 29(11):1527–1537

    Article  CAS  Google Scholar 

  42. de Bruijn FA, Dam VAT, Janssen GJM (2008) Durability and degradation issues of PEM fuel cell components. Fuel Cells 8(1):3–22

    Article  CAS  Google Scholar 

  43. Wu J, Yuan XZ, Martin JJ, Wang H, Zhang J, Shen J, Wu S, Merida W (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Sources 184(1):104–119

    Article  CAS  Google Scholar 

  44. Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem 495(2):134–145

    Article  CAS  Google Scholar 

  45. Garsany Y, Baturina OA, Swider-Lyons KE, Kocha SS (2010) Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal Chem 82(15):6321–6328

    Article  CAS  Google Scholar 

  46. Mayrhofer KJJ, Strmcnik D, Blizanac BB, Stamenkovic V, Arenz M, Markovic NM (2008) Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts. Electrochim Acta 53(7):3181–3188

    Article  CAS  Google Scholar 

  47. Masa J, Batchelor-McAuley C, Schuhmann W, Compton RG (2014) Koutecky-Levich analysis applied to nanoparticle modified rotating disk electrodes: electrocatalysis or misinterpretation. Nano Res 7(1):71–78

    Article  CAS  Google Scholar 

  48. Sánchez-Sánchez CM, Bard AJ (2009) Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalysts as quantified by scanning electrochemical microscopy. Anal Chem 81(19):8094–8100

    Article  CAS  Google Scholar 

  49. Sánchez-Sánchez CM, Rodríguez-López J, Bard AJ (2008) Scanning electrochemical microscopy. 60. Quantitative calibration of the SECM substrate generation/tip collection mode and its use for the study of the oxygen reduction mechanism. Anal Chem 80(9):3254–3260

    Article  CAS  Google Scholar 

  50. Dobrzeniecka A, Zeradjanin AR, Masa J, Puschhof A, Stroka J, Kulesza PJ, Schuhmann W (2013) Application of SECM in tracing of hydrogen peroxide at multicomponent non-noble electrocatalyst films for the oxygen reduction reaction. Catal Today 202:55–62

    Article  CAS  Google Scholar 

  51. Walsh DA, Fernández JL, Bard AJ (2006) Rapid screening of bimetallic electrocatalysts for oxygen reduction in acidic media by scanning electrochemical microscopy. J Electrochem Soc 153(6):E99

    Article  CAS  Google Scholar 

  52. Wain AJ (2014) Scanning electrochemical microscopy for combinatorial screening applications. A mini-review. Electrochem. Commun 46:9–12

    Article  CAS  Google Scholar 

  53. Black M, Cooper J, McGinn P (2004) Scanning electrochemical microscope characterization of thin film Pt-Ru alloys for fuel cell applications. Chem Eng Sci 59(22–23):4839–4845

    Article  CAS  Google Scholar 

  54. Liu B, Bard AJ, Mirkin MV, Creager SE (2004) Electron transfer at self-assembled monolayers measured by scanning electrochemical microscopy. J Am Chem Soc 126(5):1485–1492

    Article  CAS  Google Scholar 

  55. Martin RD, Unwin PR (1998) Scanning electrochemical microscopy kinetics of chemical reactions following electron-transfer measured with the substrate-generation–tip-collection mode. Faraday Trans. 94(6):753–759

    Article  CAS  Google Scholar 

  56. Nugues S, Denuault G (1996) Scanning electrochemical microscopy. amperometric probing of diffusional ion fluexes through porous membranes and human dentine. J Electroanal Chem 408(1–2):125–140

    Article  Google Scholar 

  57. Yang Y, Denuault G (1996) Scanning electrochemical microscopy (SECM). Study of the adsorption and desorption of hydrogen on platinum electrodes in Na2SO4 solution (pH = 7). J Electroanal Chem 418(1–2):99–107

    Article  CAS  Google Scholar 

  58. Shen Y, Trauble M, Wittstock G (2008) Detection of hydrogen peroxide produced during electrochemical oxygen reduction using scanning electrochemical microscopy. Anal Chem 80(3):750–759

    Article  CAS  Google Scholar 

  59. Fernández JL, Bard AJ (2003) Scanning electrochemical microscopy. 47. Imaging electrocatalytic activity for oxygen reduction in an acidic medium by the tip generation—substrate collection mode. Anal Chem 75(13):2967–2974

    Article  CAS  Google Scholar 

  60. Lu G, Cooper JS, McGinn PJ (2007) SECM imaging of electrocatalytic activity for oxygen reduction reaction on thin film materials. Electrochim Acta 52(16):5172–5181

    Article  CAS  Google Scholar 

  61. Eckhard K, Chen X, Turcu F, Schuhmann W (2006) Redox competition mode of scanning electrochemical microscopy (RC-SECM) for visualisation of local catalytic activity. Phys Chem Chem Phys 8(45):5359–5365

    Article  CAS  Google Scholar 

  62. Johnson L, Walsh DA (2012) Tip generation–substrate collection–tip collection mode scanning electrochemical microscopy of oxygen reduction electrocatalysts. J Electroanal Chem 682:45–52

    Article  CAS  Google Scholar 

  63. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892

    Article  CAS  Google Scholar 

  64. Eckhard K, Schuhmann W (2007) Localised visualisation of O2 consumption and H2O2 formation by means of SECM for the characterisation of fuel cell catalyst activity. Electrochim Acta 53(3):1164–1169

    Article  CAS  Google Scholar 

  65. Szot K, Nogala W, Niedziolka-Jönsson J, Jönsson-Niedziolka M, Marken F, Rogalski J, Kirchner CN, Wittstock G, Opallo M (2009) Hydrophilic carbon nanoparticle-laccase thin film electrode for mediatorless dioxygen reduction. Electrochim Acta 54(20):4620–4625

    Article  CAS  Google Scholar 

  66. Schäfer D, Puschhof A, Schuhmann W (2013) Scanning electrochemical microscopy at variable temperatures. Phys Chem Chem Phys 15(14):5215–5223

    Article  CAS  Google Scholar 

  67. Okunola AO, Nagaiah TC, Chen X, Eckhard K, Schuhmann W, Bron M (2009) Visualization of local electrocatalytic activity of metalloporphyrins towards oxygen reduction by means of redox competition scanning electrochemical microscopy (RC-SECM). Electrochim Acta 54(22):4971–4978

    Article  CAS  Google Scholar 

  68. Chen X, Eckhard K, Zhou M, Bron M, Schuhmann W (2009) Electrocatalytic activity of spots of electrodeposited noble-metal catalysts on carbon nanotubes modified glassy carbon. Anal Chem 81(18):7597–7603

    Article  CAS  Google Scholar 

  69. Schwamborn S, Stoica L, Chen X, Xia W, Kundu S, Muhler M, Schuhmann W (2010) Patterned CNT arrays for the evaluation of oxygen reduction activity by SECM. Chem Phys Chem 11(1):74–78

    Google Scholar 

  70. Maljusch A, Nagaiah TC, Schwamborn S, Bron M, Schuhmann W (2010) Pt-Ag catalysts as cathode material for oxygen-depolarized electrodes in hydrochloric acid electrolysis. Anal Chem 82(5):1890–1896

    Article  CAS  Google Scholar 

  71. Nagaiah TC, Maljusch A, Chen X, Bron M, Schuhmann W (2009) Visualization of the local catalytic activity of electrodeposited Pt-Ag catalysts for oxygen reduction by means of SECM. Chem Phys Chem 10(15):2711–2718

    CAS  Google Scholar 

  72. Nebel M, Erichsen T, Schuhmann W (2014) Constant-distance mode SECM as a tool to visualize local electrocatalytic activity of oxygen reduction catalysts. Beilstein J Nanotechnol 5:141–151

    Article  CAS  Google Scholar 

  73. Nebel M, Grützke S, Diab N, Schulte A, Schuhmann W (2013) Visualization of oxygen consumption of single living cells by scanning electrochemical microscopy: the influence of the faradaic tip reaction. Angew Chem Int Ed 52(24):6335–6338

    Article  CAS  Google Scholar 

  74. Nebel M, Grützke S, Diab N, Schulte A, Schuhmann W (2013) Microelectrochemical visualization of oxygen consumption of single living cells. Faraday Discuss 164:19

    Article  CAS  Google Scholar 

  75. Mallouk TE, Smotkin ES Combinatorial catalyst development methods

    Google Scholar 

  76. Senkan SM (1998) High-throughput screening of solid-state catalyst libraries. Nature 394(6691):350–353

    Article  CAS  Google Scholar 

  77. Hagemeyer A, Jandeleit B, Liu Y, Poojary DM, Turner HW, Volpe AF, Henry Weinberg W (2001) Applications of combinatorial methods in catalysis. Appl Catal A 221(1–2):23–43

    Google Scholar 

  78. Reddington E (1998) Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science 280(5370):1735–1737

    Article  CAS  Google Scholar 

  79. Schäfer D, Mardare C, Savan A, Sanchez MD, Mei B, Xia W, Muhler M, Ludwig A, Schuhmann W (2011) High-throughput characterization of Pt supported on thin film oxide material libraries applied in the oxygen reduction reaction. Anal Chem 83(6):1916–1923

    Article  CAS  Google Scholar 

  80. Fernández JL, Walsh DA, Bard AJ (2005) Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M–Co (M: Pd, Ag, Au). J Am Chem Soc 127(1):357–365

    Article  CAS  Google Scholar 

  81. Lu G, Cooper JS, McGinn PJ (2006) SECM characterization of Pt–Ru–WC and Pt–Ru–Co ternary thin film combinatorial libraries as anode electrocatalysts for PEMFC. J Power Sources 161(1):106–114

    Article  CAS  Google Scholar 

  82. Chen X, Li N, Eckhard K, Stoica L, Xia W, Assmann J, Muhler M, Schuhmann W (2007) Pulsed electrodeposition of Pt nanoclusters on carbon nanotubes modified carbon materials using diffusion restricting viscous electrolytes. Electrochem Commun 9(6):1348–1354

    Article  CAS  Google Scholar 

  83. Kulp C, Chen X, Puschhof A, Schwamborn S, Somsen C, Schuhmann W, Bron M (2010) Electrochemical synthesis of core-shell catalysts for electrocatalytic applications. Chem Phys Chem 11(13):2854–2861

    CAS  Google Scholar 

  84. Wilhelm T, Wittstock G (2003) Analysis of interaction in patterned multienzyme layers by using scanning electrochemical microscopy. Angew Chem Int Ed 42(20):2248–2250

    Article  CAS  Google Scholar 

  85. Fernández JL, Mano N, Heller A, Bard AJ (2004) Optimization of “wired” enzyme O2-electroreduction catalyst compositions by scanning electrochemical microscopy. Angew Chem Int Ed 43(46):6355–6357

    Article  CAS  Google Scholar 

  86. Shen Y, Träuble M, Wittstock G (2008) Electrodeposited noble metal particles in polyelectrolyte multilayer matrix as electrocatalyst for oxygen reduction studied using SECM. Phys Chem Chem Phys 10(25):3635

    Article  CAS  Google Scholar 

  87. Kishi A, Shironita S, Umeda M (2012) H2O2 detection analysis of oxygen reduction reaction on cathode and anode catalysts for polymer electrolyte fuel cells. J Power Sources 197:88–92

    Article  CAS  Google Scholar 

  88. Kishi A, Inoue M, Umeda M (2010) Scanning electrochemical microscopy study of H2 O2 byproduct during O2 reduction at Pt/C-Nafion composite cathode. J Phys Chem C 114(2):1110–1116

    Article  CAS  Google Scholar 

  89. Masa J, Ozoemena KI, Schuhmann W, Zagal JH (2012) Oxygen reduction reaction using N4. J. Porphyrins Phthalocyanines 16(07n08):761–784

    Google Scholar 

  90. Guilminot E, Corcella A, Chatenet M, Maillard F (2007) Comparing the thin-film rotating disk electrode and the ultramicroelectrode with cavity techniques to study carbon-supported platinum for proton exchange membrane fuel cell applications. J Electroanal Chem 599(1):111–120

    Article  CAS  Google Scholar 

  91. Chen S, Kucernak A (2004) electrocatalysis under conditions of high mass transport rate. oxygen reduction on single submicrometer-sized pt particles supported on carbon. J Phys Chem B 108(10):3262–3276

    Article  CAS  Google Scholar 

  92. Li Y, Cox JT, Zhang B (2010) Electrochemical responses and electrocatalysis at single au nanoparticles. J Am Chem Soc 132(9):3047–3054

    Article  CAS  Google Scholar 

  93. Xiao X, Bard AJ (2007) Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J Am Chem Soc 129(31):9610–9612

    Article  CAS  Google Scholar 

  94. Kwon SJ, Fan FF, Bard AJ (2010) Observing iridium oxide (IrO(x)) single nanoparticle collisions at ultramicroelectrodes. J Am Chem Soc 132(38):13165–13167

    Article  CAS  Google Scholar 

  95. Zhou H, Fan FF, Bard AJ (2010) Observation of discrete Au nanoparticle collisions by electrocatalytic amplification using Pt ultramicroelectrode surface modification. J Phys Chem Lett 1(18):2671–2674

    Article  CAS  Google Scholar 

  96. Xiao X, Fan FF, Zhou J, Bard AJ (2008) Current transients in single nanoparticle collision events. J Am Chem Soc 130(49):16669–16677

    Article  CAS  Google Scholar 

  97. Zhou Y, Rees NV, Compton RG (2012) The electrochemical detection of tagged nanoparticles via particle-electrode collisions: nanoelectroanalysis beyond immobilisation. Chem Commun 48(19):2510–2512

    Article  CAS  Google Scholar 

  98. O’Connell MA, Wain AJ (2014) Mapping electroactivity at individual catalytic nanostructures using high-resolution scanning electrochemical-scanning ion conductance microcopy. Anal Chem 86(24):12100–12107

    Article  CAS  Google Scholar 

  99. O’Connell MA, Lewis JR, Wain AJ (2015) Electrochemical imaging of hydrogen peroxide generation at individual gold nanoparticles. Chem Commun 51(51):10314–10317

    Article  CAS  Google Scholar 

  100. Lai SCS, Dudin PV, Macpherson JV, Unwin PR (2011) Visualizing zeptomole (electro)catalysis at single nanoparticles within an ensemble. J Am Chem Soc 133(28):10744–10747

    Article  CAS  Google Scholar 

  101. Masa J, Schuhmann W (2013) Systematic selection of metalloporphyrin-based catalysts for oxygen reduction by modulation of the donor-acceptor intermolecular hardness. Chem Eur J 19(29):9644–9654

    Article  CAS  Google Scholar 

  102. Zagal JH, Páez M, Tanaka A, dos Santos J, Linkous C (1992) Electrocatalytic activity of metal phthalocyanines for oxygen reduction. J Electroanal Chem 339(1–2):13–30

    Article  CAS  Google Scholar 

  103. Zagal JH, Bedioui F, Dodelet JP (eds) (2006) N4-macrocyclic metal complexes. Springer, New York

    Google Scholar 

  104. Mezour MA, Cornut R, Hussien EM, Morin M, Mauzeroll J (2010) Detection of hydrogen peroxide produced during the oxygen reduction reaction at self-assembled thiol—porphyrin monolayers on gold using SECM and nanoelectrodes. Langmuir 26(15):13000–13006

    Article  CAS  Google Scholar 

  105. Ballesteros Katemann B, Schulte A, Schuhmann W (2003) Constant-distance mode scanning electrochemical microscopy (SECM)–Part I: adaptation of a non-optical shear-force-based positioning mode for SECM tips. Chem Eur J 9(9):2025–2033

    Article  CAS  Google Scholar 

  106. Dobrzeniecka A, Zeradjanin AR, Masa J, Stroka J, Goral M, Schuhmann W, Kulesza PJ (2011) ECS Trans 35:33–44

    Article  CAS  Google Scholar 

  107. Dobrzeniecka A, Zeradjanin AR, Masa J, Blicharska M, Wintrich D, Kulesza PJ Schuhmann W Evaluation of kinetic constants on porous, non-noble catalyst layers for oxygen reduction—a comparative study between SECM and hydrodynamic methods. Catal Today. doi:10.1016/j.cattod.2015.07.043

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Schuhmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Masa, J., Ventosa, E., Schuhmann, W. (2016). Application of Scanning Electrochemical Microscopy (SECM) to Study Electrocatalysis of Oxygen Reduction by MN4-Macrocyclic Complexes. In: Zagal, J., Bedioui, F. (eds) Electrochemistry of N4 Macrocyclic Metal Complexes. Springer, Cham. https://doi.org/10.1007/978-3-319-31172-2_4

Download citation

Publish with us

Policies and ethics