Skip to main content

Non-noble Metal (NNM) Catalysts for Fuel Cells: Tuning the Activity by a Rational Step-by-Step Single Variable Evolution

  • Chapter
  • First Online:

Abstract

Low-temperature fuel cells (LTFCs) based on polymer electrolyte membranes (PEMs) fed with hydrogen are being recognized to be among the best candidates as pollution-free and energy-saving power sources for electric or hybrid vehicles or portable apparatuses because of their high-energy conversion efficiency (~58 %) and zero or nearly zero emissions. Currently, cost and durability are the main limitations of FC technology to be commercialized. A significant percentage of the cost of PEMFCs comes from precious group metal (PGM) based catalysts that are used mainly for the oxygen reduction reaction (ORR). Therefore, a breakthrough in the development of cost-effective, highly performing, and durable catalysts has been identified as the determining factor for success toward PEMFC commercialization. In particular, non-noble metal (NNM) cathodic electrocatalyst gained lots of attention in recent years to replace PGM-based catalysts for the ORR. Within various NNM electrocatalysts, the most promising ones seem to be heat-treated Fe(II) and/or Co(II) chelates and macrocycles supported on carbon particles. The formation of metal–nitrogen (M–NX/C) and metal–carbon (M/C) active ensembles after the heat treatment is necessary for ORR. In this chapter we will describe an enhancement of the electrochemical activity toward ORR through a step-by-step understanding of the variables involved during the formation of active Fe–NX NNM catalysts. We adopted different approaches in order to understand the formation of active ensembles and to increase the activity by a rational step-by-step progression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. EU Commission, Hydrogen Energy and Fuel Cells, A vision of our future. Special Report, EUR 20719 EN (2003) https://ec.europa.eu/research/energy/pdf/hlg_vision_report_en.pdf. Accessed on Sep 2015

  2. U.S. Energy Information Administration, Annual Energy Outlook 2015 with projections to 2040, DOE/EIA-0383 (2015). www.eia.gov/forecasts/aeo/pdf/0383(2015).pdf. Accessed on Sep 2015

  3. Mahlia TMI, Saktisahdan TJ, Jannifar A, Hasan MH, Matseelar HSC (2014) A review of available methods and development on energy storage; technology update. Renew Sustain Energy Rev 33:532–545

    Article  Google Scholar 

  4. Van Mierlo J, Maggetto G, Lataire Ph (2006) Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles. Energy Conv Manag 47:2748–2760

    Article  CAS  Google Scholar 

  5. Garcia P, Torreglosa JP, Fernández LM, Jurado F (2013) Control strategies for high-power electric vehicles powered by hydrogen fuel cell, battery and supercapacitor. Expert Syst Appl 40:4791–4804

    Google Scholar 

  6. Specchia S, Francia C, Spinelli P (2011) Polymer electrolyte membrane fuel cells. In: Liu R-S, Zhang L, Sun X, Liu H, Zhang J (eds) Electrochemical technologies for energy storage and conversion. Wiley-VHC Verlag GmbH & Co., KGaA, Weinheim (Germany), pp 601–670, ISBN: 978-3-527-328679

    Google Scholar 

  7. Pollet BG, Staffell I, Shang JL (2012) Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects. Electrochim Acta 84:235–249

    Article  CAS  Google Scholar 

  8. DOE Fuel Cell Technologies Office Record # 13012, (2013). http://energy.gov/sites/prod/files/2014/03/f11/13012_fuel_cell_system_cost_2013.pdf. Accessed on Sep 2015

  9. http://www.platinum.matthey.com/prices/price-charts. Accessed on Oct 2015

  10. Gasteiger H, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56:9–35

    Article  CAS  Google Scholar 

  11. Ishihara A, Ohgi Y, Matsuzawa K, Mitsushima S, Ota K-I (2010) Progress in non-precious metal oxide-based cathode for polymer electrolyte fuel cells. Electrochim Acta 55:8005–8012

    Article  CAS  Google Scholar 

  12. Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332:443–447

    Article  CAS  Google Scholar 

  13. Stamenković VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marković NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497

    Article  CAS  Google Scholar 

  14. Long NV, Yang Y, Thi CM, Minh NV, Cao Y, Nogami M (2013) The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells. Nano Energy 2:636–676

    Article  CAS  Google Scholar 

  15. Shao M, Odell JH, Peles A, Su D (2014) The role of transition metals in the catalytic activity of Pt alloys: quantification of strain and ligand effects. Chem Commun 50:2173–2176

    Article  CAS  Google Scholar 

  16. Cui C, Gan L, Li HH, Yu SH, Heggen M, Strasser P (2012) Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett 12:5885–5889

    Article  CAS  Google Scholar 

  17. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J Chem Phys 120:10240–10246

    Article  CAS  Google Scholar 

  18. Stamenkovic V, Stamenković V, Schmidt TJ, Ross PN, Marković NM (2002) Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J Phys Chem B 106:11970–11979

    Article  CAS  Google Scholar 

  19. Yang W, Wang X, Yang F, Yang C, Yang X (2008) Carbon nanotubes decorated with Pt nanocubes by a noncovalent functionalization method and their role in oxygen reduction. Adv Mater 20:2579–2587

    Article  CAS  Google Scholar 

  20. Lim B, Jiang M, Camargo PH, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305

    Article  CAS  Google Scholar 

  21. Choi S-I, Xie S, Shao M, Odell JH, Lu N, Pen H-C, Protsailo L, Guerrero S, Park J, Xia X, Wang J, Kim MJ, Xia Y (2013) Synthesis and characterization of 9 nm Pt–Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction. Nano Lett 13:3420–3425

    Article  CAS  Google Scholar 

  22. Wu J, Zhang J, Peng Z, Yang S, Wagner FT, Yang H (2010) Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J Am Chem Soc 132:4984–4985

    Article  CAS  Google Scholar 

  23. Wang D, Xin HL, Hovden R, Wang H, Yu Y, Muller DA, Di Salvo FJ, Abruña HD (2013) Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nature Mater 12:81–87

    Article  CAS  Google Scholar 

  24. Kang Y, Murray CB (2010) Synthesis and electrocatalytic properties of cubic Mn − Pt Nanocrystals (Nanocubes). J Am Chem Soc 132:7568–7569

    Article  CAS  Google Scholar 

  25. Liu L, Samjeské G, Takao S, Nagasawa K, Iwasawa Y (2014) Fabrication of PtCu and PtNiCu multi-nanorods with enhanced catalytic oxygen reduction activities. J Power Sources 253:1–8

    Article  CAS  Google Scholar 

  26. Chen Z, Higgins D, Yu A, Zhang L, Zhang J (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4:3167–3195

    Article  CAS  Google Scholar 

  27. Jaouen F, Herranz J, Lefèvre M, Dodelet J-P, Kramm UI, Herrmann I, Bogdanoff P, Maruyama J, Nagaoka T, Garsuch A, Dahn JR, Olson T, Pylypenko S, Atanassov P, Ustinov EA (2009) Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction. ACS Appl Mater Interfaces 1:1623–1639

    Article  CAS  Google Scholar 

  28. Ramaswamy N, Tylus U, Jia Q, Mukerjee S (2013) Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry. J Am Chem Soc 135:15443–15449

    Article  CAS  Google Scholar 

  29. Liu G, Li X, Ganesan P, Popov BN (2010) Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells. Electrochim Acta 55:2853–2858

    Article  CAS  Google Scholar 

  30. Stamenković VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Marković NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247

    Article  CAS  Google Scholar 

  31. Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin HL, Snyder JD, Li D, Herron JA, Mavrikakis M, Chi M, More KL, Li Y, Marković NM, Somorjai GA, Yang P, Stamenković VR (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343:1339–1343

    Article  CAS  Google Scholar 

  32. Gasteiger HA, Marković NM (2009) Chemistry: Just a dream–or future reality? Science 324:48–49

    Article  CAS  Google Scholar 

  33. P. Zelenay. Non-precious metal fuel cell cathodes: Catalyst development and electrode structure design. http://www.hydrogen.energy.gov/pdfs/review15/fc107_zelenay_2015_o.pdf. Accessed on Oct 2015

  34. Chung HT, Johnston CM, Zelenay P (2009) Synthesis and evaluation of heat-treated, cyanamide-derived non-precious catalysts for oxygen reduction. ECS Trans 25:485–492

    Article  CAS  Google Scholar 

  35. Chung HT, Johnston CM, Artyushkova K, Ferrandon M, Myers DJ, Zelenay P (2010) Cyanamide-derived non-precious metal catalyst for oxygen reduction. Electrochem Comm 12:1792–1795

    Article  CAS  Google Scholar 

  36. Wu G, Artyushkova K, Ferrandon M, Kropf AJ, Myers DJ, Zelenay P (2009) Performance durability of polyaniline-derived non-precious cathode catalysts. ECS Trans 25:1299–1311

    Article  Google Scholar 

  37. Nekooi P, Akbari M, Amini MK (2010) CoSe nanoparticles prepared by the microwave-assisted polyol method as an alcohol and formic acid tolerant oxygen reduction catalyst. Int J Hydrogen Energy 35:6392–6398

    Article  CAS  Google Scholar 

  38. Ziegelbauer JM, Olson TS, Pylypenko S, Alamgir F, Jaye C, Atanassov P, Mukerjee S (2008) Direct spectroscopic observation of the structural origin of peroxide generation from Co-based pyrolyzed porphyrins for ORR applications. J Phys Chem C 112:8839–8849

    Article  CAS  Google Scholar 

  39. Lee KR, Lee KU, Lee JW, Ahn BT, Woo SI (2010) Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media. Electrochem Commun 12:1052–1056

    Article  CAS  Google Scholar 

  40. Herranz J, Lefèvre M, Larouche N, Stansfield B, Dodelet J-P (2007) Step-by-step synthesis of non-noble metal electrocatalysts for O2 reduction under proton exchange membrane fuel cell conditions. J Phys Chem C 111:19033–19042

    Article  CAS  Google Scholar 

  41. Biddinger EJ, Knapke DS, von Deak D, Ozkan US (2010) Effect of sulfur as a growth promoter for CNx nanostructures as PEM and DMFC ORR catalysts. Appl Catal B Environ 96:72–82

    Article  CAS  Google Scholar 

  42. Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F (2010) Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord Chem Rev 23–24:2755–2791

    Article  CAS  Google Scholar 

  43. Masa J, Ozoemena K, Schuhmann W, Zagal JH (2012) Oxygen reduction reaction using N4-metallomacrocyclic catalysts: fundamentals on rational catalyst design. J Porphyrins Phthalocyanines 16:761–784

    Article  CAS  Google Scholar 

  44. Charreteur F, Jaouen F, Dodelet J-P (2009) Iron porphyrin-based cathode catalysts for PEM fuel cells: Influence of pyrolysis gas on activity and stability. Electrochim Acta 54:6622–6630

    Article  CAS  Google Scholar 

  45. Collman JP, Marrocco M, Denisevich P, Koval C, Anson FC (1979) Potent catalysis of the electroreduction of oxygen to water by dicobalt porphyrin dimers adsorbed on graphite electrodes. J Electroanal Chem Interfacial Electrochem 101:117–122

    Article  CAS  Google Scholar 

  46. Collman JP, Denisevich P, Konai Y, Marrocco M, Koval C, Anson FC (1980) Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins. J Am Chem Soc 102:6027–6036

    Article  CAS  Google Scholar 

  47. Liu HY, Weaver MJ, Wang C-B, Chang CK (1983) Dependence of electrocatalysis for oxygen reduction by adsorbed dicobalt cofacial porphyrins upon catalyst structure. J Electroanal Chem Interfacial Electrochem 145:439–457

    Article  CAS  Google Scholar 

  48. Yeager EB (1984) Electrocatalysts for O2 reduction. Electrochim Acta 29:1527–1537

    Article  CAS  Google Scholar 

  49. Scherson D, Tanaka AA, Gupta SL, Tryk D, Fierro C, Holze R, Yeager EB (1986) Transition metal macrocycles supported on high area carbon: Pyrolysis—mass spectrometry studies. Electrochim Acta 31:1247–1390

    Article  CAS  Google Scholar 

  50. Morcos I, Yeager EB (1970) Transition metal macrocycles supported on high area carbon: pyrolysis—mass spectrometry studies. Electrochim Acta 15:953–975

    Article  CAS  Google Scholar 

  51. Jaouen F, Lefèvre M, Dodelet J-P, Cai M (2006) Heat-treated Fe/N/C catalysts for O2 electroreduction: are active sites hosted in micropores? J Phys Chem B 110:5553–5558

    Article  CAS  Google Scholar 

  52. Jaouen F, Proietti E, Lefèvre M, Chenitz R, Dodelet J-P, Wu G, Chung HT, Johnston CM, Zelenay P (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4:114–130

    Article  CAS  Google Scholar 

  53. Chung HT, Won JH, Zelenay P (2013) Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat Commun 4:1922

    Article  CAS  Google Scholar 

  54. Velázquez-Palenzuela A, Zhang L, Wang L, Cabot PL, Brillas E, Tsay K, Zhang J (2011) Fe–Nx/C electrocatalysts synthesized by pyrolysis of Fe(II)–2,3,5,6-tetra(2-pyridyl)pyrazine complex for PEM fuel cell oxygen reduction reaction. Electrochim Acta 56:4744–4752

    Article  CAS  Google Scholar 

  55. Li S, Zhang L, Liu H, Pan M, Zan L, Zhang J (2010) Heat-treated cobalt–tripyridyl triazine (Co–TPTZ) electrocatalysts for oxygen reduction reaction in acidic medium. Electrochim Acta 55:4403–4411

    Article  CAS  Google Scholar 

  56. van Veen JAR, Colijn HA, van Baar JF (2008) On the effect of a heat treatment on the structure of carbon-supported metalloporphyrins and phthalocyanines. Electrochim Acta 33:801–804

    Article  Google Scholar 

  57. Dodelet JP (2013) The controversial role of the metal in Fe- or Co-based electrocatalysts for the oxygen reduction reaction in acid medium. In: Shao M (ed) Electrocatalysis in fuel cells: a non- and low-platinum approach. Springer London, United Kingdom, pp. 271–338, ISBN: 978-1-4471-4910-1

    Google Scholar 

  58. Li H, Li Y, Koper MTM, Calle-Vallejo F (2014) Bond-making and breaking between carbon, nitrogen, and oxygen in electrocatalysis. J Am Chem Soc 136:15694–15701

    Article  CAS  Google Scholar 

  59. Tylus U, Jia Q, Strickland K, Ramaswamy N, Serov A, Atanassov P, Mukerjee S (2014) Elucidating oxygen reduction active sites in pyrolyzed metal—nitrogen coordinated non-precious-metal electrocatalyst systems. J Phys Chem C 118:8999–9008

    Article  CAS  Google Scholar 

  60. Lefèvre M, Proietti E, Jaouen F, Dodelet J-P (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324:71–74

    Article  CAS  Google Scholar 

  61. Cheon JY, Kim TY, Choi YM, Jeong HY, Kim MG, Sa YJ, Kim J, Lee ZH, Yang TH, Kwon KJ, Terasaki O, Park G-G, Adzic RR, Joo SH (2013) Ordered mesoporous porphyrinic carbons with very high electrocatalytic activity for the oxygen reduction reaction. Sci Rep 3:2715

    Article  Google Scholar 

  62. Zitolo A, Goellner V, Armel V, Sougrati M-T, Mineva T, Stievano L, Fonda E, Jaouen F (2015) Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nature Mater 14:937–942

    Article  CAS  Google Scholar 

  63. Strickland K, Miner E, Jia Q, Tylus U, Ramaswamy N, Liang W, Sougrati M-T, Jaouen F, Mukerjee S (2015) Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination. Nat Commun 6:7343

    Article  CAS  Google Scholar 

  64. Zhao D, Shui J-L, Grabstanowicz LR, Chen C, Commet SM, Xu T, Lu J, Liu D-J (2014) Highly efficient non-precious metal electrocatalyst prepared from one-pot synthesized zeolitic imidazolate. Adv Mater 26:1093–1097

    Google Scholar 

  65. Monteverde Videla AHA, Zhang L, Kim J, Zeng J, Francia C, Zhang J, Specchia S (2013) Mesoporous carbons supported non-noble metal Fe–NX electrocatalysts for PEM fuel cell oxygen reduction reaction. J Appl Electrochem 43:159–169

    Article  CAS  Google Scholar 

  66. Monteverde Videla AHA, Osmieri L, Specchia S (2014) The use of different types of reduced graphene oxide (rGO) on the reduction oxygen reaction (ORR) under alkaline conditions. Electronic abstract FA-4:L13. In: 6th Forum on New Materials, CIMTEC2014, Montecatini Terme (Italy) 15–19/06/2014. http://2014.cimtec-congress.org/abstracts_symposium_fa. Accessed on Oct 2015

  67. Monteverde Videla AHA, Ban S, Specchia S, Zhang L, Zhang J (2014) Non-noble Fe–NX electrocatalysts supported on the reduced graphene oxide for oxygen reduction reaction. Carbon 76:386–400

    Article  CAS  Google Scholar 

  68. Zeng J, Francia C, Monteverde Videla AHA, Bodoardo S, Specchia S, Penazzi N (2014) Reduced graphene oxide as cathode materials for rechargeable Li-O2 cells. In: 65th annual meeting of the international society of electrochemistry, Lausanne (Switzerland), 31/08-05/09/2014. pp 1317

    Google Scholar 

  69. Osmieri L, Monteverde Videla AHA, Specchia S (2015) Activity of Co–N multi walled carbon nanotubes electrocatalysts for oxygen reduction reaction in acid conditions. J Power Sources 278:296–307

    Article  CAS  Google Scholar 

  70. Negro E, MonteverdeVidela AHA, Baglio V, Aricò AS, Specchia S, Koper GJM (2015) Fe–N supported on graphitic carbon nano-networks grown from cobalt as oxygen reduction catalysts for low-temperature fuel cells. Appl Catal B Environ 166–167:75–83

    Article  CAS  Google Scholar 

  71. Monteverde Videla AHA, Osmieri L, Armandi M, Specchia S (2015) Varying the morphology of Fe-N-C electrocatalysts by templating iron phthalocyanine precursor with different porous SiO2 to promote the oxygen reduction reaction. Electrochim Acta 177:43–50

    Article  CAS  Google Scholar 

  72. Osmieri L, Monteverde Videla AHA, Specchia S (2015) Optimization of a Fe-N-C electrocatalyst supported on ordered mesoporous carbon functionalized with polypyrrole for oxygen reduction reaction. E-book of Abstracts, V Iberian Symposium on Hydrogen, Fuel Cells and Advanced Batteries, Tenerife (Spain) 5–8/07/2015, pp. 36–39, ISBN: 978-84-606-8621-7

    Google Scholar 

  73. Osmieri L, Monteverde Videla AHA, Alipour Moghadam Esfahani R, Vankova S, Armandi M, Specchia S (2015) Zinc(II)-phtalocyanine as precursor for preparation of extremely high surface area N-doped carbon for potential applications in electrochemical devices. In: Abstract book the italian meeting on porphyrins and phthalocyanines, Rome (Italy) 6–8/07/2015. pp 51. ISBN 978–88–7959–879–8

    Google Scholar 

  74. Osmieri L, Alipour Moghadam Esfahani R, Monteverde Videla AHA, Vasile NS, Specchia S (2015) Kinetic analysis of oxygen reduction reaction on different self-supported C-N-Me (Me = Fe, Co, Cu) catalysts in acidic medium. In: ECS conference on electrochemical energy conversion & storage with SOFC-XIV. Glasgow (United Kingdom) 26–31/07/2015. http://ma.ecsdl.org/content/MA2015-03/3/622.abstract. Accessed on Oct 2015

  75. Vasile NS, Doherty R, Monteverde Videla AHA, Specchia S (2015) 3D multi-physic modeling and validation of a gas diffusion electrode for analyzing transport and kinetic phenomena of noble and non-noble based catalysts for PEMFC. In: international conference on electrochemical energy science and technology (EEST2015). Vancouver (Canada) 16–22/08/2015

    Google Scholar 

  76. Osmieri L, Videla AHAM, Armandi M, Specchia S (2015) A micro-silica reactor (μSiO2-R) able to produce highly porous non-noble catalysts for oxygen reduction reaction under alkaline conditions. In: challenges towards zero platinum for oxygen reduction. La Grande Motte (France) 14–16/09/2015

    Google Scholar 

  77. Kramm UI, Herrmann-Geppert I, Fiechter S, Zehl G, Zizak I, Dorbandt I, Schmeißer D, Bogdanoff P (2014) Effect of iron-carbide formation on the number of active sites in Fe–N–C catalysts for the oxygen reduction reaction in acidic media. J Mater Chem A 2:2663–2670

    Article  CAS  Google Scholar 

  78. Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim Acta 53:4937–4951

    Article  CAS  Google Scholar 

  79. Kramm UI, Lefèvre M, Larouche N, Schmeisser D, Dodelet J-P (2013) Correlations between mass activity and physicochemical properties of Fe/N/C catalysts for the ORR in PEM fuel cell via 57Fe Mössbauer spectroscopy and other techniques. J Am Chem Soc 136:978–985

    Article  CAS  Google Scholar 

  80. Hu Y, Jensen JO, Zhang W, Cleemann LN, Xing W, Bjerrum NJ, Li Q (2014) Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angew Chem Int Ed 53:3675–3679

    Article  CAS  Google Scholar 

  81. Dodelet J-P, Chenitz R, Yang L, Lefèvre M (2014) A new catalytic site for the electroreduction of Oxygen? Chem Cat Chem 7:1866–1867

    Google Scholar 

  82. Hu Y, Jensen JO, Zhang W, Huang Y, Cleemann LN, Xing W, Bjerrum NJ, Li Q (2014) Direct synthesis of Fe3C-functionalized graphene by high temperature autoclave pyrolysis for oxygen reduction. Chem Sus Chem 7:2099–2105

    Article  CAS  Google Scholar 

  83. Hu Y, Jensen JO, Zhang W, Martin S, Chenitz R, Pan C, Xing W, Bjerrum NJ, Li Q (2015) Fe3C-based oxygen reduction catalysts: synthesis, hollow spherical structures and applications in fuel cells. J Mater Chem A 3:1752–1760

    Article  CAS  Google Scholar 

  84. Strickland K, Miner E, Jia Q, Tylus U, Ramaswamy N, Liang W, Sougrati M-T, Jaouen F, Mukerjee S (2015) Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination. Nat Commun 6:7343–7357

    Article  CAS  Google Scholar 

  85. Wikström M (2012) Active site intermediates in the reduction of O2 by cytochrome oxidase, and their derivatives. Biochim Biophys Acta 1817:468–475

    Google Scholar 

  86. Ishihara A, Tamura M, Ohgi Y, Matsumoto M, Matsuzawa K, Mitsushima S, Imai H, Ota K-I (2013) Emergence of oxygen reduction activity in partially oxidized tantalum carbonitrides: roles of deposited carbon for oxygen reduction-reaction-site creation and surface electron conduction. J Phys Chem C 117:18837–18844

    Article  CAS  Google Scholar 

  87. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892

    Article  CAS  Google Scholar 

  88. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y (2011) Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat Chem 3:546–550

    Article  CAS  Google Scholar 

  89. Zagal JH, Bindra P, Yeager E (1980) A mechanistic study of O2 reduction on water soluble phthalocyanines adsorbed on graphite electrodes. J Electrochem Soc 127:1506–1517

    Article  CAS  Google Scholar 

  90. Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Norskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 45:2897–2901

    Article  CAS  Google Scholar 

  91. Hyman MP, Medlin JW (2007) Effects of electronic structure modifications on the adsorption of oxygen reduction reaction intermediates on model Pt(111)-alloy surfaces. J Phys Chem C 111:17052–17060

    Article  CAS  Google Scholar 

  92. Lalande G, Côté R, Tamizhmani G, Guay D, Dodelet J-P, Dignard-Bailey L, Weng LT, Bertrand P (1995) Physical, chemical and electrochemical characterization of heat-treated tetracarboxylic cobalt phthalocyanine adsorbed on carbon black as electrocatalyst for oxygen reduction in polymer electrolyte fuel cells. Electrochim Acta 40:2635–2646

    Article  CAS  Google Scholar 

  93. Li ZP, Liu ZX, Zhu KN, Li Z, Liu BH (2012) Synergy among transition element, nitrogen, and carbon for oxygen reduction reaction in alkaline medium. J Power Sources 219:163–171

    Article  CAS  Google Scholar 

  94. Han MY, Özyilmaz B, Zhang Y, Kim P (2007) Document energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805-1–206805-4

    Google Scholar 

  95. Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(2009):109–162

    Google Scholar 

  96. Xu C, Xu B, Gu Y, Xiong Z, Sunb J, Zhao XS (2015) Graphene-based electrodes for electrochemical energy storage. Energy Environ Sci 8:790–823

    Article  CAS  Google Scholar 

  97. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347:6217

    Article  CAS  Google Scholar 

  98. Dai L, Xue Y, Qu L, Choi H-J, Baek J-B (2015) Metal-free catalysts for oxygen reduction reaction. Chem Rev 115:4823–4892

    Article  CAS  Google Scholar 

  99. Lee KR, Lee KU, Lee JW, Ahn BT, Woo S (2010) Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media. Electrochem Commun 12:1052–1055

    Article  CAS  Google Scholar 

  100. Wang S, Yu D, Dai L, Chang DW, Baek J-B (2011) Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. ACS Nano 8:6202–6209

    Article  CAS  Google Scholar 

  101. Gartia Y, Parnell CM, Watanabe F, Szwedo P, Biris AS, Peddi N, Nima ZA, Ghosh A (2015) Graphene-enhanced oxygen reduction by MN4 type Cobalt(III) catalyst. ACS Sustain Chem Eng 3:97–102

    Article  CAS  Google Scholar 

  102. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K-I, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K-I, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951

    Article  CAS  Google Scholar 

  103. Kowlgi K, Lafont U, Rappolt M, Koper GJM (2012) Uniform metal nanoparticles produced at high yield in dense microemulsions. J Colloid Interf Sci 372:16–23

    Article  CAS  Google Scholar 

  104. Negro E, Latsuzbaia R, Dieci M, Boshuizen I, Koper GJM (2015) Pt electrodeposited over carbon nano-networks grown on carbon paper as durable catalyst for PEM fuel cell. Appl Catal B Environ 166:155–165

    Article  CAS  Google Scholar 

  105. Wu D, Lv Q, Feng S, Chen J, Chen Y, Qiu Y, Yao X (2015) Polylactide composite foams containing carbon nanotubes and carbon black: Synergistic effect of filler on electrical conductivity. Carbon 95:380–387

    Article  CAS  Google Scholar 

  106. Yang H, Gong J, Wen X, Xue J, Chen Q, Jiang Z, Tian N, Tang T (2015) Effect of carbon black on improving thermal stability, flame retardancy and electrical conductivity of polypropylene/carbon fiber composites. Compos Sci Technol 113:31–37

    Article  CAS  Google Scholar 

  107. Negro E, Dieci M, Sordi D, Kowlgi K, Makkee M, Koper GJM (2014) High yield, controlled synthesis of graphitic networks from dense micro emulsions. Chem Commun 50:11848–11851

    Article  CAS  Google Scholar 

  108. Woo S, Lee J, Park S-K, Kim H, Chung TD, Piao Y (2013) Enhanced electrocatalysis of PtRu onto graphene separated by Vulcan carbon spacer. J Power Sources 222:261–266

    Article  CAS  Google Scholar 

  109. Barroso-Bogeat A, Alexandre-Franco M, Fernández-González C, Sánchez-González J, Gómez-Serrano V (2015) Temperature dependence of DC electrical conductivity of activated carbon–metal oxide nanocomposites. Some insight into conduction mechanisms. J Phys Chem Solids 87:259–270

    Article  CAS  Google Scholar 

  110. Wang S-C, Yang J, Zhou X-Y, Xie J, Ma L-L, Huang B (2014) Electrochemical properties of carbon nanotube/graphene oxide hybrid electrodes fabricated via layer-by-layer self-assembly. J Electroanal Chem 722:141–147

    Article  CAS  Google Scholar 

  111. Jin S, Li N, Cuia H, Wang C (2013) Growth of the vertically aligned graphene@ amorphous GeOx sandwich nanoflakes and excellent Li storage properties. Nano Energy 2:1128–1136

    Article  CAS  Google Scholar 

  112. Na HG, Cho HY, Kwon YJ, Kang SY, Lee C, Jung TK, Lee H-S, Kim HW (2015) Reduced graphene oxide functionalized with Cu nanoparticles: Fabrication, structure, and sensing properties. Thin Solid Films 588:11–18

    Article  CAS  Google Scholar 

  113. Ku K, Kim B, Chung H, Kim W (2010) Characterization of graphene-based supercapacitors fabricated on Al foils using Au or Pd thin films as interlayers. Synth Met 160:2613–2617

    Article  CAS  Google Scholar 

  114. Yu Z, Carter RN (2010) Measurement of effective oxygen diffusivity in electrodes for proton exchange membrane fuel cells. J Power Sources 195:1079–1084

    Article  CAS  Google Scholar 

  115. Khomenko VG, Barsukov VZ, Katashinskii AS (2005) The catalytic activity of conducting polymers toward oxygen reduction. Electrochim Acta 50:1675–1683

    Article  CAS  Google Scholar 

  116. Sulub SR, Martínez-Millán W, Smit MA (2009) Study of the catalytic activity for oxygen reduction of polythiophene modified with Cobalt or Nickel. Int J Electrochem Sci 4:1015–1027

    Google Scholar 

  117. Martínez-Millán W, Smit MA (2009) Study of electrocatalysts for oxygen reduction based on electroconducting polymer and nickel. J Appl Polym Sci 112:2959–2967

    Article  CAS  Google Scholar 

  118. Zhang HJ, Yuan X, Sun L, Zeng X, Jiang QZ, Shao Z, Ma ZF (2010) Pyrolyzed CoN4-chelate as an electrocatalyst for oxygen reduction reaction in acid media. Int J Hydrogen Energy 35:2900–2903

    Article  CAS  Google Scholar 

  119. Choi YJ, Higgins D, Chen Z (2012) Highly durable graphene nanosheet supported iron catalyst for oxygen reduction reaction in PEM fuel cells. J Electrochem Soc 159:B86–B89

    Article  CAS  Google Scholar 

  120. Shao Y, Zhang S, Wang C, Nie Z, Liu J, Wang Y, Lin Y (2010) Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. J Power Sources 195:4600–4605

    Article  CAS  Google Scholar 

  121. Liu G, Li X, Ganesan P, Popov BN (2009) Development of nonprecious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon. Appl Catal B Environ 96:156–165

    Article  CAS  Google Scholar 

  122. Merzougui B, Hachimi A, Akinpelu A, Bukola S, Shao M (2013) A Pt free catalyst for oxygen reduction reaction based on Fe–N multiwalled carbon nanotube composites. Electrochim Acta 107:126–132

    Article  CAS  Google Scholar 

  123. Byon HR, Suntivich J, Shao-Horn Y (2011) Graphene-based non noble-metal catalysts for oxygen reduction reaction in acid. Chem Mater 23:3421–3428

    Article  CAS  Google Scholar 

  124. Charreteur F, Jaouen F, Ruggeri S, Dodelet J-P (2008) Fe/N/C nonprecious catalysts for PEM fuel cells: influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction. Electrochim Acta 53:2925–2938

    Article  CAS  Google Scholar 

  125. Byon HR, Suntivich J, Crumlin EJ, Shao-Horn Y (2011) Fe–N modified multi-walled carbon nanotubes for oxygen reduction reaction in acid. Phys Chem Chem Phys 13:21437–21445

    Google Scholar 

  126. Oh HS, Oh JG, Roh B, Hwang I, Kim H (2011) Development of highly active and stable non-precious oxygen reduction catalysts for PEM fuel cell using polypyrrole and a chelating agent. Electrochem Commun 13:879–881

    Google Scholar 

  127. Babu SK, Chung HT, Wu G, Zelenay P, Litster S (2014) Modeling hierarchical non-precious metal catalyst cathodes for PEFCs using multi-scale X-ray CT imaging. ECS Trans 64:281–292

    Google Scholar 

  128. Artyushkova K, Atanassov P, Dutta M, Wessel S, Colbow V (2015) Structural correlations: design levers for performance and durability of catalyst layers. J Power Sources 284:631–641

    Article  CAS  Google Scholar 

  129. Banham D, Ye S, Pei K, Ozaki J-I, Kishimoto T, Imashiro Y (2015) A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J Power Sources 285:334–348

    Article  CAS  Google Scholar 

  130. Yuan S, Shui J-L, Grabstanowicz L, Chen C, Commet S, Reprogle B, Xu T, Yu L, Liu D-J (2013) A highly active and support-free oxygen reduction catalyst prepared from ultrahigh-surface-area porous polyporphyrin. Angew Chem Int Ed 52:8349–8353

    Article  CAS  Google Scholar 

  131. Wu W, Wan Z, Chen W, Zhu M, Zhang D (2015) Synthesis of mesoporous alumina with tunable structural properties. Microporous Mesoporous Mater 217:12–20

    Article  CAS  Google Scholar 

  132. Badoga S, Sharma RV, Dalai AK, Adjaye J (2015) Synthesis and characterization of mesoporous aluminas with differentpore sizes: application in NiMo supported catalyst for hydrotreating of heavy gas oil. Appl Catal A Gen 489:86–97

    Article  CAS  Google Scholar 

  133. Zeng J, Francia C, Dumitrescu MA, Monteverde Videla AHA, Ijeri VS, Specchia S, Spinelli P (2012) Electrochemical performance of Pt-based catalysts supported on different ordered mesoporous carbons (Pt/OMCs) for oxygen reduction reaction. Ind Eng Chem Res 51:7500–7509

    Google Scholar 

  134. Qin Y, Li J, Yuan J, Kong Y, Tao Y, Lin F, Li S (2014) Hollow mesoporous carbon nitride nanosphere/three-dimensional graphene composite as high efficient electrocatalyst for oxygen reduction reaction. J Power Sources 272:696–702

    Article  CAS  Google Scholar 

  135. Hung C-T, Yu N, Chen C-T, Wu P-H, Han X, Kao Y-S, Liu T-C, Chu Y, Deng F, Zheng A, Liu S-B (2014) Highly nitrogen-doped mesoscopic carbons as efficient metal-free electrocatalysts for oxygen reduction reactions. J Mater. Chem A 2:20030–20037

    Article  CAS  Google Scholar 

  136. Kramm UI, Herranz J, Larouche N, Arruda TM, Lefèvre M, Jaouen F, Bogdanoff P, Fiechter S, Abs-Wurmbach I, Mukerjee S, Dodelet J-P (2012) Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells. Phys Chem Chem Phys 14:11673–11688

    Article  CAS  Google Scholar 

  137. Tüysüz H, Schüth F, Zhi L, Müllen K, Comotto M (2015) Ammonia decomposition over iron phthalocyanine-based materials. Chem Cat Chem 7:1453–1459

    Google Scholar 

  138. Kramm UI, Herrmann-Geppert I, Bogdanoff P, Fiechter S (2011) Effect of an ammonia treatment on structure, composition, and oxygen reduction reaction activity of Fe-N-C catalysts. J Phys Chem C 115:23417–23427

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge all colleagues that stimulated the review process of the obtained results to accomplish this chapter. In particular: Dr. G. Ercolino, Dr. R. Alipour Moghadam Esfahani, Dr. N.S. Vasile, and Prof. A. Kotarba (Jagiellonian University in Krakow). The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2011-2014) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement DURAMET n° 278054 (Improved durability and cost-effective components for new generation solid polymer electrolyte direct methanol fuel cells), and from the Italian Ministry of Education, Universities and Research (MIUR, PRIN 2010–2011) under grant agreement NAMEDPEM n° 2010CYTWAW (Advanced nanocomposite membranes and innovative electrocatalysts for durable polymer electrolyte membrane fuel cells).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro H. A. Monteverde Videla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Monteverde Videla, A.H.A., Osmieri, L., Specchia, S. (2016). Non-noble Metal (NNM) Catalysts for Fuel Cells: Tuning the Activity by a Rational Step-by-Step Single Variable Evolution. In: Zagal, J., Bedioui, F. (eds) Electrochemistry of N4 Macrocyclic Metal Complexes. Springer, Cham. https://doi.org/10.1007/978-3-319-31172-2_3

Download citation

Publish with us

Policies and ethics