Skip to main content

Oxygen Electroreduction on M-N4 Macrocyclic Complexes

  • Chapter
  • First Online:

Abstract

Inspired by biological catalysts, such as myoglobin and hemoglobin, many M-N4 macrocycles have been investigated as promising catalysts for the oxygen reduction reactions (ORRs) in alkaline and acid media for several decades. Such macrocyclic complexes include transition-metal porphyrins (MPs) or phthalocyanines (MPcs)-like molecules , and nitrogen-chelated transition metal clusters in a carbon matrix (pyrolyzed M-N4/C). Although extensive research has been carried out to acquire understanding on how the ORRs progress on these M-N4 macrocyclic complexes, there are still several key fundamental aspects to be clarified. It is still debatable about the nature of the active sites of M-N4 complex catalysts for the ORRs and the ORR reaction mechanisms on the M-N4/C catalysts. In this chapter, we reviewed the studies of ORRs on M-N4 macrocyclic complexes up to date from both experimental and computational perspectives. First, we surveyed the experimental results about the various factors affecting the catalytic performance of the M-N4 macrocyclic complexes for ORR. Then, we specifically discussed how heat treatment and carbon nanostructured substrates would significantly enhance the catalytic performance of the M-N4 macrocyclic catalysts. As the focus of this paper, we summarized the advancements on application of quantum mechanical calculations to gain insights into the ORRs on the M-N4 macrocyclic catalysts at an electronic and atomistic scale.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jacobson MZ, Colella WG, Golden DM (2005) Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science 308:1901–1905

    Article  CAS  Google Scholar 

  2. Materials Research Society/American Physical Society (2011) Energy critical elements: securing materials for emerging technologies. Washington, DC

    Google Scholar 

  3. Wu G, Moore KL, Johnston CN, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332:443–447

    Article  CAS  Google Scholar 

  4. Jasinski R (1964) A new fuel cell cathode catalyst. Nature 201:1212–1213

    Article  CAS  Google Scholar 

  5. Wiesener K, Ohms D, Neumann V, Franke R (1989) N4 macrocycles as elelctrocatalysts for the cathodic reduction of oxygen. Mater Chem Phys 22:457–475

    Article  CAS  Google Scholar 

  6. Pontie M, Gobin C, Pauporte T, Bedioui F, Devynck J (2000) Electrochemical nitric oxide microsensors: sensitivity and selectivity characterization. Anal Chim Acta 411:175–185

    Article  CAS  Google Scholar 

  7. Nguyen TQ, Escano MCS, Kasai H (2010) Nitric oxide adsorption effects on metal phthalocynines. J Phys Chem B 114:10017–10021

    Article  CAS  Google Scholar 

  8. Liu KJ, Gast P, Moussavi M, Norby SW, Vahidi N, Walczak T, Wu M, Swartz HM (1993) Lithium phthalocyanine: a probe for electron paramagnetic resonance oximetry in viable biological systems. P Natl Acad Sci USA 90:5438–5442

    Article  CAS  Google Scholar 

  9. Medina WS, Dos Santos NA, Curti C, Tedesco AC, dos Santos AC (2009) Effects of zinc phthalocynine tetrasulfonate-based photodynamic therapy on rat brain isolated mitochondria. Chem-biol Interact 179:402–406

    Article  CAS  Google Scholar 

  10. Van Baar JF, Van Veen JAR, De Wit N (1982) Selective eletro-oxidation of carbon monoxide with carbon-supported Rh- and Ir-porphyrins at low potentials in acid electrolyte. Electrochim Acta 27:57–59

    Article  Google Scholar 

  11. Villagra E, Bedioui F, Nyokong T, Carlos Canales J, Sancy M, Paez MA, Costamagna J, Zagal JH (2008) Tuning the redox properties of Co-N4 macrocyclic complexes for the catalytic electrooxidation of glucose. Electrochim Acta 53:4883–4888

    Article  CAS  Google Scholar 

  12. Vilakazi SL, Nyokong T (2001) Voltammetric determination of nitric oxide on cobalt phthalocynine modified microelectrodes. J Electroanal Chem 512:56–63

    Article  CAS  Google Scholar 

  13. Jiang R, Dong S (1990) Study on the eletrocatalytic reduction of H2O2 at iron protoporphyrin modified electrode with a rapid rotation-scan method. Electrochim Acta 35:1227–1232

    Article  CAS  Google Scholar 

  14. Furuya N, Yoshiba H (1989) Electroreduction of nitrogen to ammonia on gas-diffusion eletrodes modified by Fe-phthalocyanine. J Electroanal Chem Interfacial Eletrochem 263:171–174

    Article  CAS  Google Scholar 

  15. Yoshiba H, Furuya N (2003) Simultaneous reduction of carbon dioxide and nitrate ions at gas diffusion electrodes with various metallophthalocynine catalysts. Electrochim Acta 48:3953–3958

    Article  CAS  Google Scholar 

  16. Osmanbas OA, Koca A, Kandaz M, Karaca F (2008) Electrocatalytic activity of phthalocynines bearing thiophenes for hydrogen production from water. Int J Hydrogen Energ 33:3281–3288

    Article  CAS  Google Scholar 

  17. Kato M, Nishioka Y, Kaifu K, Kawamura K, Ohno S (1985) Nearinfrared sensitive electrophotographic photoconductors using chloroindium chlorophthalocynie. Appl Phys Lett 46:196–197

    Article  CAS  Google Scholar 

  18. Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F (2010) Metallophthalocynine-based molecular materials as catalysts for electrochemical reactions. Coordin Chem Rev 254:2755–2791

    Article  CAS  Google Scholar 

  19. Collman JP, Fu L, Herrman PC, Zhang X (1977) A functional model related to cytochrome c oxidase and its electrocatalytic four-electron reduction of O2. Science 275:949–951

    Article  Google Scholar 

  20. Boulatov R, Collman JP, Shiryaeva IM, Sunderland CJ (2002) Functional analogues of the dioxygen reduction site in cytochrome oxidase: mechanistic aspects and possible effects of CuB. J Am Chem Soc 124:11923–11935

    Article  CAS  Google Scholar 

  21. Collman JP, Boulatov R, Sunderland CJ, Fu L (2004) Functional analogues of cytochrome c oxidase, myoglobin, and hemoglobin. Chem Rev 104:561–588

    Article  CAS  Google Scholar 

  22. Coliman JP, Devaraj NK, Decreau RA, Yang Y, Yan YL, Ebina W, Eberspacher TA, Chidsey CED (2007) Cytochrome c oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux. Science 315:1565–1568

    Article  CAS  Google Scholar 

  23. Collman JP, Ghosh S (2010) Recent applications of a synthetic model of cytochrome c oxidase: beyond functional modeling. Inorg Chem 49:5798–5810

    Article  CAS  Google Scholar 

  24. Masa J, Ozoemenab K, Schuhmanna W, Zagal JH (2012) Oxygen reduction reaction using N4-metallomacrocyclic catalysts: fundamentals on rational catalyst design. J Porphyrins Phthalocyanines 16:761–784

    Article  CAS  Google Scholar 

  25. Richards G, Swavey S (2009) Electrooxidation of Fe Co, Ni and Cu metalloporphyrins on edge-plane pyrolytic graphite electrodes and their electrocatalytic ability towards the reduction of molecular oxygen in acidic media. Eur J Inorg Chem 2009:5367–5376

    Article  CAS  Google Scholar 

  26. Yuasa M, Nishihara R, Shi C, Anson FC (2001) A comparison of several meso-tetraalkyl cobalt porphyrins as catalysts for the electroreduction of dioxygen. Polym Adv Technol 12:266–270

    Article  CAS  Google Scholar 

  27. Jahnke H, Schonborn M, Zimmermann G (1976) Organic dyestuffs as catalysts for fuel cells. Top Curr Chem 61:133–181

    Article  CAS  Google Scholar 

  28. Chu D, Jiang R (2002) Novel electrocatalysts for direct methanol fuel cells. Solid State Ionics 148:591–599

    Article  CAS  Google Scholar 

  29. Li W, Yu A, Higgins DC, Llanos BG, Chen Z (2010) Biologically inspired highly durable iron phthalocyanine catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J Am Chem Soc 132:17056–17058

    Article  CAS  Google Scholar 

  30. Seo MH, Higgins D, Jiang G, Choi SM, Han B, Chen Z (2014) Theoretical insight into highly durable iron phthalocyanine derived non-precious catalysts for oxygen reduction reactions. J Mater Chem A 2:19707–19716

    Article  CAS  Google Scholar 

  31. Ward AL, Elbaz L, Kerr JB, Arnold J (2012) Nonprecious metal catalysts for fuel cell applications: electrochemical dioxygen activation by a series of first row transition metal tris(2-pyridylmethyl)amine complexes. Inorg Chem 51:4694–4706

    Article  CAS  Google Scholar 

  32. Honda T, Kojima T, Fukuzumi S (2012) Proton-coupled electron-transfer reduction of dioxygen catalyzed by a saddle-distorted cobalt phthalocyanine. J Am Chem Soc 134:4196–4206

    Article  CAS  Google Scholar 

  33. Kakuda S, Peterson RL, Ohkubo K, Karlin KD, Fukuzumi S (2013) Enhanced catalytic four-electron dioxygen (O2) and two-electron hydrogen peroxide (H2O2) reduction with a copper(II) complex possessing a pendant ligand pivalamido group. J Am Chem Soc 135:6513–6522

    Article  CAS  Google Scholar 

  34. Kakuda S, Rolle CJ, Ohkubo K, Siegler MA, Karlin KD, Fukuzumi S (2015) Lewis acid-induced change from four- to two-electron reduction of dioxygen catalyzed by copper complexes using scandium triflate. J Am Chem Soc 137:3330–3337

    Article  CAS  Google Scholar 

  35. McClure JP, Devine CK, Jiang R, Chu D, Cuomo JJ, Parsons GN, Fedkiw PS (2013) Oxygen electroreduction on Ti- and Fe-containing carbon fibers. J Electrochem Soc 160:F769–F778

    Article  CAS  Google Scholar 

  36. Sedona F, Marino MD, Forrer D, Vittadini A, Casarin M, Cossaro A, Floreano L, Verdini A, Sambi M (2012) Tuning the catalytic activity of Ag(110)-supported Fe phthalocyanine in the oxygen reduction reaction. Nat Mater 11:970–977

    Article  CAS  Google Scholar 

  37. Ponce I, Silva JF, Oñate R, Rezende MC, Páez MA, Pavez J, Zagal JH (2011) Enhanced catalytic activity of Fe phthalocyanines linked to Au(111) via conjugated self-assembled monolayers of aromatic thiols for O2 reduction. Electrochem Commun 13:1182–1185

    Article  CAS  Google Scholar 

  38. Ponce I, Silva JF, Oñate R, Rezende MC, Paez MA, Zagal JH, Pavez J (2012) Enhancement of the catalytic activity of Fe phthalocyanine for the reduction of O2 anchored to Au(111) via conjugated self-assembled monolayers of aromatic thiols as compared to Cu phthalocyanine. J Phys Chem C 116:15329–15341

    Article  CAS  Google Scholar 

  39. Jiang Y, Lu Y, Lv X, Han D, Zhang Q, Niu L, Chen W (2013) Enhanced catalytic performance of Pt-free iron phthalocyanine by graphene support for efficient oxygen reduction reaction. ACS Catal 3:1263–1271

    Article  CAS  Google Scholar 

  40. Cui L, Liu Y, He X (2014) Iron(II) tetraaminophthalocyanine functionalized graphene: synthesis, characterization and their application in direct methanol fuel cell. J Electroanal Chem 727:91–98

    Article  CAS  Google Scholar 

  41. Li T, Peng Y, Li K, Zhang R, Zheng L, Xia D, Zuo X (2015) Enhanced activity and stability of binuclear iron (III) phthalocyanine on graphene nanosheets for electrocatalytic oxygen reduction in acid. J Power Sources 293:511–518

    Article  CAS  Google Scholar 

  42. Xi YT, Wei PJ, Wang RC, Liu JG (2015) Bio-inspired multinuclear copper complexes covalently immobilized on reduced graphene oxide as efficient electrocatalysts for the oxygen reduction reaction. Chem Commun 51:7455–7458

    Article  CAS  Google Scholar 

  43. Wu G, Johnston CM, Mack NH, Artyushkova K, Ferrandon M, Nelson M, Lezama-Pacheco JS, Conradson SD, Moore KL, Myers DJ, Zelenay P (2011) Synthesis-structure-performance correlation for polyaniline-Me-C non-precious metal cathode catalysts for oxygen reduction in fuel cells. J Mater Chem 21:11392–11405

    Article  CAS  Google Scholar 

  44. Zitolo A, Goellner V, Armel V, Sougrati MT, Mineva T, Stievano L, Fonda E, Jaouen F (2015) Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat Mater 14:937–942

    Article  CAS  Google Scholar 

  45. Jasinski R (1964) A new fuel cell cathode catalyst. Nature 201:1212–1213

    Article  CAS  Google Scholar 

  46. Jasinski R (1965) Cobalt phthalocyanine as a fuel cell cathode. J Electrochem Soc 112:526–528

    Article  CAS  Google Scholar 

  47. Randin JP (1974) Interpretation of the relative electrochemical activity of various metal phthalocyanines for the oxygen reduction reaction. Electrochim Acta 19:83–85

    Article  CAS  Google Scholar 

  48. Zagal JH, Sen RK, Yeager E (1977) Oxygen reduction by Co(II) tetrasulfonatephthalocyanine irreversibly adsorbed on a stress-annealed pyrolytic graphite electrode surface. J Electroanal Chem 83:207–213

    CAS  Google Scholar 

  49. Collman JP, Denisevich P, Konai Y, Marrocco M, Koval C, Anson FC (1980) Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins. J Am Chem Soc 102:6027–6036

    Article  CAS  Google Scholar 

  50. Zagal J, Bindra P, Yeager E (1980) A mechanistic study of O2 reduction on water soluble phthalocyanines adsorbed on graphite electrodes. J Electrochem Soc 127:1506–1517

    Article  CAS  Google Scholar 

  51. Durand R Jr, Anson FC (1982) Catalysis of dioxygen reduction at graphite electrodes by an adsorbed cobalt(II) porphyrin. J Electroanal Chem 134:273–289

    Article  CAS  Google Scholar 

  52. Shigehara K, Anson FC (1982) Catalysis of the reduction of dioxygen to water at graphite electrodes coated with two transition metal catalysts acting in series. J Electroanal Chem 132:107–118

    Article  CAS  Google Scholar 

  53. Liu HY, Weaver MJ, Wang CB, Chang CK (1983) dependence of electrocatalysis for oxygen reduction by adsorbed dicobalt cofacial porphyrins upon catalyst structure. J Electroanal Chem 145:439–447

    Article  CAS  Google Scholar 

  54. van den Brink F, Visscher W, Barendrecht E (1983) Electrode catalysis of cathodic oxygen reduction by metal phthalocyanines—Part I. Introduction, cobalt phthalocyanine as electrocatalyst: experimental part. J Electroanal Chem 157:283–304

    Google Scholar 

  55. van den Brink F, Visscher W, Barendrecht E (1984) Electrode catalysis of cathodic oxygen reduction by metal phthalocyanines—Part III. Iron phthalocyanine as electrocatalyst: experimental part. J Electroanal Chem 172:301–325

    Article  Google Scholar 

  56. Zagal JH, Paez M, Sturm J, Ureta-zanartu S (1984) Electroreduction of oxygen on mixtures of phthalocyanines co-adsorbed on a graphite electrode. J Electroanal Chem 181:295–300

    Article  CAS  Google Scholar 

  57. Collman JP, Kim K (1986) Electrocatalytic four-electron reduction of dioxygen by iridium porphyrins adsorbed on graphite. J Am Chem Soc 108:7847–7849

    Article  CAS  Google Scholar 

  58. Elzing A, van der Putten A, Visscher W, Barendrecht E (1986) The cathodic reduction of oxygen at cobalt phthalocyanine—influence of electrode preparation on electrode catalysis. J Electroanal Chem 200:313–322

    Article  CAS  Google Scholar 

  59. Nevin WA, Hempstead MR, Liu W, Leznoff CC, Lever ABP (1987) Elecrochemistry and spectroelectrochemistry of mononuclear and binuclear cobalt phthalocyanines. Inorg Chem 26:570–577

    Article  CAS  Google Scholar 

  60. van der Putten A, Elzing A, Visscher W, Barendrecht E (1986) Oxygen reduction on vacuum-deposited and adsorbed transition-metal phthalocyanine films. J Electroanal Chem 214:523–533

    Article  Google Scholar 

  61. Elzing A, van der Putten A, Visscher W, Barendrecht E (1987) The mechanism of oxygen reduction at iron tetrasulfonato-phthalocyanine incorporated in polypyrrole. J Electroanal Chem 233:113–123

    Article  CAS  Google Scholar 

  62. van der Putten A, Elzing A, Visscher W, Barendrecht E (1987) Redox potential and electrocatalysis of O2 reduction on transition metal chelates. J Electroanal Chem 221:95–104

    Article  Google Scholar 

  63. Janda P, Kobayashi N, Auburn PR, Lam H, Leznoff CC, Lever ABP (1989) Dioxygen reduction at a graphite electrode modified by mononuclear tetraneopentoxyphthalocyaninatocobalt(II) and related polynuclear species. Can J Chem 67:1109–1119

    Article  CAS  Google Scholar 

  64. Jiang R, Dong S (1988) Research on chemically modified electrodes—catalytic reduction of dioxygen at a cobalt phthalocyanine-doped polyaniline film electrode. J Electroanal Chem 246:101–117

    Article  CAS  Google Scholar 

  65. Coutanceau C, el Hourch A, Crouigneau P, Leger JM, Lamy C (1995) Conducting polymer electrodes modified by metal trtrasulfonated phthalocyanines: preparation and electrocatalytic behavior towards dioxygen reduction in acid medium. Electrochim Acta 40:2739–2748

    Article  CAS  Google Scholar 

  66. Lalande G, Faubert G, Cote R, Guay D, Dodelet JP, Weng LT, Bertrand P (1996) Catalytic activity and stability of heat-treated iron phthalocyanines for the electroreduction of oxygen in polymer electrolyte fuel cells. J Power Sources 61:227–237

    Article  CAS  Google Scholar 

  67. Bagotzky VS, Tarasevich MR, Radyushkina KA, Levina OA, Andrusyova SI (1977/78) Electrocatalysis of the oxygen reduction process on metal chelates in acid electrolyte. J Power Sources 2:233–240

    Google Scholar 

  68. Blomquist J, Lang H, Larsson R, Widelov A (1992) Pyrolysis behavior of metalloporphyrins Part 2—A mossbauer study of pyrolysed Fe tetraphenylporphyrin chloride. J Chem Soc, Faraday Trans 88:2007–2011

    Article  CAS  Google Scholar 

  69. Widelov A, Larsson R (1992) ESCA and electrochemical studies on pyrolyzed iron and cobalt tetraphenylporphyrins. Electrochim Acta 37:187–197

    Article  Google Scholar 

  70. Widelov A (1993) Pyrolysis of iron and cobalt porphyrins sublimated onto the surface of carbon black as a method to prepare catalysts for O2 reduction. Electrochim Acta 38:2493–2502

    Article  CAS  Google Scholar 

  71. Franke R, Ohms D, Wiesener K (1989) Investigation of the influence of thermal treatment on the properties of carbon materials modified by N4-chelates for the reduction of oxygen in acidic media. J Electroanal Chem 260:63–73

    Article  CAS  Google Scholar 

  72. Biloul A, Gouerec P, Savy M, Scarbeck G, Besse S, Riga J (1996) Oxygen electrocatalysis under fuel cell conditions: behavior of cobalt porphyrins and tetraazaannulene analogues. J Appl Electrochem 26:1139–1146

    Article  CAS  Google Scholar 

  73. Gouerec P, Savy M (1999) Oxygen reduction electrocatalysis: ageing of pyrolyzed cobalt macrocycles dispersed on an active carbon. Electrochim Acta 44:2653–2661

    Article  CAS  Google Scholar 

  74. Scherson DA, Gupta SL, Fterro C, Yeager EB, Kordesch ME, Eldkidge J, Hoffman RW, Blue J (1983) Cobalt tetramethoxyphenyl porphyrin—emission mossbauer spectroscopy and O2 reduction electrochemical studies. Electrochim Acta 28:1205–1209

    Article  CAS  Google Scholar 

  75. Gojković SL, Gupta S, Savinell RF (1998) Heat-treated iron(III) tetramethoxyphenyl porphyrin supported on high-area carbon as an electrocatalyst for oxygen reduction—I. Characterization of the electrocatalyst. J Electrochem Soc 145:3493–3499

    Google Scholar 

  76. Sun GQ, Wang JT, Savinell RF (1998) Iron(III) tetramethoxyphenylporphyrin (FeTMPP) as methanol tolerant electrocatalyst for oxygen reduction in direct methanol fuel cells. J Appl Electrochem 28:1087–1093

    Article  CAS  Google Scholar 

  77. Gojković SL, Gupta S, Savinell RF (1999) Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction—Part II. Kinetics of oxygen reduction. J Electroanal Chem 462:63–72

    Google Scholar 

  78. Gojković SL, Gupta S, Savinell RF (1999) Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction: Part III. Detection of hydrogen-peroxide during oxygen reduction. Electrochim Acta 45:889–897

    Google Scholar 

  79. van Veen JAR, Visser C (1979) Oxygen reduction on monomeric transition metal phthalocyanines in acid electrolyte. Electrochim Acta 24:921–928

    Article  Google Scholar 

  80. Steiger B, Anson FC (1997) 5,10,15,20-Tetrakis(4-((pentaammineruthenio)-cyano)phenyl)porphyrinato]cobalt(II) immobilized on graphite electrodes catalyzes the electroreduction of O2 to H2O, but the corresponding 4-cyano-2,6-dimethylphenyl derivative catalyzes the reduction only to H2O2. Inorg Chem 36:4138–4140

    Article  CAS  Google Scholar 

  81. Vasudevan P, Santosh Mann N, Tyagi S (1990) Transition metal complexes of porphyrins and phthalocyanines as electrocatalysts for dioxygen reduction. Transition Met Chem 15:81–90

    Article  CAS  Google Scholar 

  82. Song E, Shi C, Anson F (1998) Comparison of the behavior of several cobalt porphyrins as electrocatalysts for the reduction of O2 at graphite electrodes. Langmuir 14:4315–4321

    Article  CAS  Google Scholar 

  83. Shi C, Steiger B, Yuasa M, Anson FC (1997) Electroreduction of O2 to H2O at unusually positive potentials catalyzed by the simplest of the cobalt porphyrins. Inorg Chem 36:4294–4295

    Article  CAS  Google Scholar 

  84. Zeng ZY, Gupta SL, Huang H, Yeager EB (1991) Oxygen reduction on poly(4-vinylpyridine)-modified ordinary pyrolytic graphite electrodes with adsorbed cobalt tetra-sulphonated phthalocyanine in acid solutions. J Appl Electrochem 21:973–981

    Article  CAS  Google Scholar 

  85. Baranton S, Coutanceau C, Roux C, Hahn F, Leger JM (2005) Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: tolerance to methanol, stability and kinetics. J Electroanal Chem 577:223–234

    Article  CAS  Google Scholar 

  86. Baker R, Wilkinson DP, Zhang J (2008) Electrocatalytic activity and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures. Electrochim Acta 53:6906–6919

    Article  CAS  Google Scholar 

  87. Ramírez G, Trollund E, Isaacs M, Armijo F, Zagal J, Costamagna J, Aguirre MJ (2002) Electroreduction of molecular oxygen on poly-iron-tetraaminophthalocyanine modified electrodes. Electroanalysis 14:540–545

    Article  Google Scholar 

  88. Zhang L, Song C, Zhang J, Wang H, Wilkinson DP (2005) Temperature and pH dependence of oxygen reduction catalyzed by iron fluoroporphyrin adsorbed on a graphite electrode. J Electrochem Soc 152:A2421–A2426

    Article  CAS  Google Scholar 

  89. Sehlotho N, Nyokong T (2006) Effects of ring substituents on electrocatalytic activity of manganese phthalocyanines towards the reduction of molecular oxygen. J Electroanal Chem 595:161–167

    Article  CAS  Google Scholar 

  90. Masa J, Schuhmann W (2013) Systematic selection of metalloporphyrin-based catalysts for oxygen reduction by modulation of the donor-acceptor intermolecular hardness. Chem Eur J 19:9644–9654

    Article  CAS  Google Scholar 

  91. Zagal J, Paez M, Tanaka AA, dos Santos JR, Linkous CA (1992) Electrocatalytic activity of metal phthalocyanines for oxygen reduction. J Electroanal Chem 339:13–30

    Article  CAS  Google Scholar 

  92. van den Brink F, Barendrecht E, Visscher W (1980) The cathodic reduction of oxygen—a review with emphasis on macrocyclic organic metal complexes as electrocatalysts. Recl Trav Chim Pay B 99:253–262

    Article  Google Scholar 

  93. Wang G, Ramesh N, Hsu A, Chu D, Chen R (2008) Density functional theory study of the adsorption of oxygen molecule on iron phthalocyanine and cobalt phthalocyanine. Mol Simulat 34:1051–1056

    Article  CAS  Google Scholar 

  94. Wiesener K (1986) N4-chelates as electrocatalyst for cathodic oxygen reduction. Electrochim Acta 31:1073–1078

    Article  CAS  Google Scholar 

  95. Elzing A, van der Putten A, Visscher W, Barendrecht E (1986) The cathodic reduction of oxygen at cobalt phthalocyanine—influence of electrode preparation on electrocatalysis. J Electroanal Chem 200:313–322

    Article  CAS  Google Scholar 

  96. Zhang J, Anson FC (1993) Complexes of Cu(II) with electroactive chelating ligands adsorbed on graphite electrodes: surface coordination chemistry and electrocatalysis. J Electroanal Chem 348:81–97

    Article  CAS  Google Scholar 

  97. Zhang J, Anson FC (1993) Electrocatalysts for the reduction of O2 and H2O2 based on complexes of Cu(II) with the strongly adsorbing 2,9-dimethyl-1,10-phenanthroline ligand. Electrochim Acta 38:2423–2429

    Article  CAS  Google Scholar 

  98. Liu H, Zhang L, Zhang J, Ghosh D, Jung J, Downing BW, Whittemore E (2006) Electrocatalytic reduction of O2 and H2O2 by adsorbed cobalt tetramethoxyphenyl porphyrin and its application for fuel cell cathodes. J Power Sources 161:743–752

    Article  CAS  Google Scholar 

  99. Chen R, Li H, Chu D, Wang G (2009) Unraveling oxygen reduction reaction mechanisms on carbon-supported Fe-phthalocyanine and Co-phthalocyanine catalysts in alkaline solutions. J Phys Chem C 113:20689–20697

    Article  CAS  Google Scholar 

  100. Yeager E (1981) Recent advances in the science of electrocatalysis. J Electrochem Soc 128:160C–171C

    Article  Google Scholar 

  101. Beck F (1977) The redox mechanism of the chelate-catalysed oxygen cathode. J Appl Electrochem 7:239–245

    Article  CAS  Google Scholar 

  102. van den Brink F, Visscher W, Barendrecht E (1983) Electrocatalysis of cathodic oxygen reduction by metal phthalocyanines: Part II. Cobalt phthalocyanine as electrocatalyst: a mechanism of oxygen reduction. J Electroanal Chem 157:305–318

    Google Scholar 

  103. Yeager E (1984) Electrocatalysts for O2 reduction. Electrochim Acta 29:1527–1537

    Article  CAS  Google Scholar 

  104. Shi C, Anson FC (1990) Catalytic pathways for the electroreduction of O2 by iron Tetrakis(4-N-methylpyridyl)porphyrin or iron tetraphenylporphyrin adsorbed on edge plane pyrolytic graphite electrodes. Inorg Chem 29:4298–4305

    Article  CAS  Google Scholar 

  105. Nikolic BZ, Adzic RR, Yeager EB (1979) Reflectance spectra of monolayers of tetrasulfonated transition metal phthalocyanines adsorbed on electrode surfaces. J Electroanal Chem 103:281–287

    Article  CAS  Google Scholar 

  106. Chang CJ, Loh ZH, Shi C, Anson FC, Nocera DG (2004) Targeted proton delivery in the catalyzed reduction of oxygen to water by bimetallic pacman porphyrins. J Am Chem Soc 126:10013–10020

    Article  CAS  Google Scholar 

  107. Tsuda M, Dino AW, Nakanishi H, Kasai H (2005) Orientation dependence of O2 dissociation from heme–O2 adduct. Chem Phys Lett 402:71–74

    Article  CAS  Google Scholar 

  108. van Veen JAR, van Baar JF, Kroese KJ (1981) Effect of heat treatment on the performance of carbon-supported transition-metal chelates in the electrochemical reduction of oxygen. J Chem Soc, Faraday Trans 1(77):2827–2843

    Article  Google Scholar 

  109. van der Putten A, Elzing A, Visscher W, Barendrecht E (1986) Oxygen reduction on pyrolyzed carbon-supported transition metal chelates. J Electroanal Chem 205:233–244

    Article  Google Scholar 

  110. van Veen JAR, Colijn HA, van Baar JF (1988) On the effect of a heat treatment on the structure of carbon-supported metalloporphyrins and phthalocyanines. Electrochim Acta 33:801–804

    Article  Google Scholar 

  111. Ladouceur M, Lalande G, Guay D, Dodelet JP, Dignard-Bailey L, Trudeau ML, Schulz R (1993) Pyrolyzed cobalt phthalocyanine as electrocatalyst for oxygen reduction. J Electrochem Soc 140:1974–1981

    Article  CAS  Google Scholar 

  112. Faubert G, Lalande G, Cote R, Guay D, Dodelet JP, Weng LT, Bertrand P, Denes G (1996) Heat-treated iron and cobalt tetraphenylpophyrins adsorbed on carbon black: physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells. Electrochim Acta 41:1689–1701

    Article  CAS  Google Scholar 

  113. Bae IT, Tryk DA, Scherson DA (1998) Effect of heat treatment on the redox properties of iron porphyrins adsorbed on high area carbon in acid electrolytes: an in situ Fe K-edge X-ray absorption near-edge structure study. J Phys Chem B 102:4114–4117

    Article  CAS  Google Scholar 

  114. Faubert G, Cote R, Guay D, Dodelet JP, Denes G, Bertrand P (1998) Iron catalysts prepared by high-temperature pyrolysis of tetraphenylporphyrins adsorbed on carbon black for oxygen reduction in polymer electrolyte fuel cells. Electrochim Acta 43:341–353

    Article  CAS  Google Scholar 

  115. Okada T, Gokita M, Yuasa M, Sekine I (1998) Oxygen reduction characteristics of heat-treated catalysts based on cobalt-porphyrin ion complexes. J Electrochem Soc 145:815–822

    Article  CAS  Google Scholar 

  116. Bouwkamp-Wijnoltz AL, Visscher W, van Veen JAR (1998) The selectivity of oxygen reduction by pyrolyzed iron porphyrin supported on carbon. Electrochim Acta 43:3141–3152

    Article  CAS  Google Scholar 

  117. Kalvelage H, Mecklenburg A, Kunz U, Hoffmann U (2000) Electrochemical reduction of oxygen at pyrolyzed iron and cobalt N4-chelates on carbon black supports. Chem Eng Technol 23:803–807

    Article  CAS  Google Scholar 

  118. Pylypenko S, Mukherjee S, Olson TS, Atanassov P (2008) Non-platinum oxygen reduction electrocatalysts based on pyrolyzed transition metal macrocycles. Electrochim Acta 53:7875–7883

    Article  CAS  Google Scholar 

  119. Charreteur F, Jaouen F, Dodelet JP (2009) Iron porphyrin-based cathode catalysts for PEM fuel cells: influence of pyrolysis gas on activity and stability. Electrochim Acta 54:6622–6630

    Article  CAS  Google Scholar 

  120. Herrmann I, Kramm UI, Fiechter S, Bogdanoff P (2009) Oxalate supported pyrolysis of CoTMPP as electrocatalysts for the oxygen reduction reaction. Electrochim Acta 54:4275–4287

    Article  CAS  Google Scholar 

  121. Herrmann I, Kramm UI, Radnik J, Fiechter S, Bogdanoffa P (2009) Influence of sulfur on the pyrolysis of CoTMPP as electrocatalyst for the oxygen reduction reaction. J Electrochem Soc 156:B1283–B1292

    Article  CAS  Google Scholar 

  122. Li S, Zhanga L, Liu H, Pan M, Zan L, Zhang J (2010) Heat-treated cobalt–tripyridyl triazine (Co–TPTZ) electrocatalysts for oxygen reduction reaction in acidic medium. Electrochim Acta 55:4403–4411

    Article  CAS  Google Scholar 

  123. Kramm UI, Abs-Wurmbach I, Herrmann-Geppert I, Radnik J, Fiechter S, Bogdanoffa P (2011) Influence of the electron-density of FeN4-centers towards the catalytic activity of pyrolyzed FeTMPPCl-based ORR-electrocatalysts. J Electrochem Soc 158:B69–B78

    Article  CAS  Google Scholar 

  124. Olson TS, Pylypenko S, Fulghum JE, Atanassov P (2010) Bifunctional oxygen reduction reaction mechanism on non-platinum catalysts derived from pyrolyzed porphyrins. J Electrochem Soc 157:B54–B63

    Article  CAS  Google Scholar 

  125. Schulenburg H, Stankov S, Schunemann V, Radnik J, Dorbandt I, Fiechter S, Bogdanoff P, Tributsch H (2003) Catalysts for the oxygen reduction from heat-treated iron(III) tetramethoxyphenylporphyrin chloride: structure and stability of active sites. J Phys Chem B 107:9034–9041

    Article  CAS  Google Scholar 

  126. Scherson D, Tanaka AA, Gupta SL, Tryk D, Fierro C, Holze R, Yeager EB, Lattimer RP (1986) Transition metal macrocycles supported on high area carbon: pyrolysis—mass spectrometry studies. Electrochim Acta 31:1247–1258

    Article  CAS  Google Scholar 

  127. Cao R, Thapa R, Kim H, Xu X, Kim MG, Li Q, Park N, Liu M, Cho J (2013) Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat Commun 4:2076

    Google Scholar 

  128. Okunola A, Kowalewska B, Bron M, Kulesza PJ, Schuhmann W (2009) Electrocatalytic reduction of oxygen at electropolymerized films of metalloporphyrins deposited onto multi-walled carbon nanotubes. Electrochim Acta 54:1954–1960

    Article  CAS  Google Scholar 

  129. Zhang W, Shaikh AU, Tsui EY, Swager TM (2009) Cobalt porphyrin functionalized carbon nanotubes for oxygen reduction. Chem Mater 21:3234–3241

    Article  CAS  Google Scholar 

  130. Chen Z, Higgins D, Chen Z (2010) Electrocatalytic activity of nitrogen doped carbon nanotubes with different morphologies for oxygen reduction reaction. Electrochim Acta 55:4799–4804

    Article  CAS  Google Scholar 

  131. Mamuru SA, Ozoemena KI, Fukuda T, Kobayashi N, Nyokong T (2010) Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonylphthalocyanines supported on multi-walled carbon nanotube modified graphite electrode. Electrochim Acta 55:6367–6375

    Article  CAS  Google Scholar 

  132. Mamuru SA, Ozoemena KI (2010) Heterogeneous electron transfer and oxygen reduction reaction at nanostructured iron(II) phthalocyanine and its MWCNTs nanocomposites. Electroanalysis 22:985–994

    Article  CAS  Google Scholar 

  133. Schilling T, Okunola A, Masa J, Schuhmann W, Bron M (2010) Carbon nanotubes modified with electrodeposited metal porphyrins and phenanthrolines for electrocatalytic applications. Electrochim Acta 55:7597–7602

    Article  CAS  Google Scholar 

  134. Morozan A, Campidelli S, Filoramo A, Jousselme B, Palacin S (2011) Catalytic activity of cobalt and iron phthalocyanines or porphyrins supported on different carbon nanotubes towards oxygen reduction reaction. Carbon 49:4839–4847

    Article  CAS  Google Scholar 

  135. Dong G, Huang M, Guan L (2011) Iron phthalocyanine coated on single-walled carbon nanotubes composite for the oxygen reduction reaction in alkaline media. Phys Chem Chem Phys 14:2557–2559

    Article  CAS  Google Scholar 

  136. Yuan Y, Zhao B, Jeon Y, Zhong S, Zhou S, Kim S (2011) Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells. Bioresour Technol 102:5849–5854

    Article  CAS  Google Scholar 

  137. Moa G, Liao S, Zhang Y, Zhang W, Ye J (2012) Synthesis of active iron-based electrocatalyst for the oxygen reduction reaction and its unique electrochemical response in alkaline medium. Electrochim Acta 76:430–439

    Article  CAS  Google Scholar 

  138. Ramavathu LN, Maniam KK, Gopalram K, Chetty R (2012) Effect of pyrolysis temperature on cobalt phthalocyanine supported on carbon nanotubes for oxygen reduction reaction. J Appl Electrochem 42:945–951

    Article  CAS  Google Scholar 

  139. Dobrzeniecka A, Zeradjanin A, Masa J, Puschhof A, Stroka J, Kulesza PJ, Schuhmann W (2013) Application of SECM in tracing of hydrogen peroxide at multicomponent non-noble electrocatalyst films for the oxygen reduction reaction. Catal Today 202:55–62

    Article  CAS  Google Scholar 

  140. Yoo E, Zhou H (2013) Fe phthalocyanine supported by graphene nanosheet as catalyst in Lie-air battery with the hybrid electrolyte. J Power Sources 244:429–434

    Article  CAS  Google Scholar 

  141. Kruusenberg I, Matisen L, Tammeveski K (2013) Oxygen electroreduction on multi-walled carbon nanotube supported metal phthalocyanines and porphyrins in acid media. Int J Electrochem Sci 8:1057–1066

    CAS  Google Scholar 

  142. Elouarzaki K, Haddad R, Holzinger M, Goff AL, Thery J, Cosnier S (2014) MWCNT-supported phthalocyanine cobalt as air-breathing cathodic catalyst in glucose/O2 fuel cells. J Power Sources 255:24–28

    Article  CAS  Google Scholar 

  143. Zhou J, Duchesne PN, Hu Y, Wang J, Zhang P, Li Y, Regier T, Dai H (2014) Fe–N bonding in a carbon nanotube–graphene complex for oxygen reduction: an XAS study. Phys Chem Chem Phys 16:15787–15791

    Article  CAS  Google Scholar 

  144. Zhang R, Peng Y, Li Z, Li K, Ma J, Liao Y, Zheng L, Zuo X, Xia D (2014) Oxygen electroreduction on heat-treated multi-walled carbon nanotubes supported iron polyphthalocyanine in acid media. Electrochim Acta 147:343–351

    Article  CAS  Google Scholar 

  145. Lv G, Cui L, Wu Y, Liu Y, Pu T, He X (2013) A novel cobalt tetranitrophthalocyanine/graphene composite assembled by an in situ solvothermal synthesis method as a highly efficient electrocatalyst for the oxygen reduction reaction in alkaline medium. Phys Chem Chem Phys 15:13093–13100

    Article  CAS  Google Scholar 

  146. Cui L, Lv G, Dou Z, He X (2013) Fabrication of iron phthalocyanine/graphene micro/nanocomposite by solvothermally assisted π-π assembling method and its application for oxygen reduction reaction. Electrochim Acta 106:272–278

    Article  CAS  Google Scholar 

  147. Jiang Y, Lu Y, Lv X, Han D, Zhang Q, Niu L, Chen W (2013) Enhanced catalytic performance of Pt-free iron phthalocyanine by graphene support for efficient oxygen reduction reaction. ACS Catal 3:1263–1271

    Article  CAS  Google Scholar 

  148. Xu Z, Li H, Yin B, Shu Y, Zhao X, Zhang D, Zhang L, Li K, Hou X, Lu J (2013) N-doped graphene analogue synthesized by pyrolysis of metal tetrapyridinoporphyrazine with high and stable catalytic activity for oxygen reduction. RSC Adv 3:9344–9351

    Article  CAS  Google Scholar 

  149. Cui L, Liu Y, He X (2014) Iron(II) tetraaminophthalocyanine functionalized graphene: synthesis, characterization and their application in direct methanol fuel cell. J Electroanal Chem 727:91–98

    Article  CAS  Google Scholar 

  150. Gao X, Wang J, Ma Z, Ye J (2014) Iron tetrasulfophthalocyanine functionalized graphene nanosheets foroxygen reduction reaction in alkaline media. Electrochim Acta 130:543–550

    Article  CAS  Google Scholar 

  151. Jiang L, Li M, Lin L, Li Y, He X, Cui L (2014) Electrocatalytic activity of metalloporphyrins grown in situ on graphene sheets toward oxygen reduction reaction in an alkaline medium. RSC Adv 4:26653–26661

    Article  CAS  Google Scholar 

  152. Li M, Jiang LQ, Lin L, Li YF, Yu DL, Cui LL, He XQ (2014) Fabrication of graphene-supported tetraferrocenylporphyrin electrocatalyst for oxygen reduction and its unique electrochemical response in both alkaline and acid media. J Solid State Electrochem 18:2743–2753

    Article  CAS  Google Scholar 

  153. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864

    Article  Google Scholar 

  154. Kohn W, Sham LJ (1965) Self-consistent equation including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  155. Kohn W (1999) Nobel lecture: electronic structure of matter—wave functions and density functionals. Rev Mod Phys 71:1253

    Article  CAS  Google Scholar 

  156. Ruban AV, Skriver HL, Nørskov JK (1999) Surface segregation energies in transition-metal alloys. Phys Rev B 59:15990

    Article  Google Scholar 

  157. Zhang Y, Duan Z, Xiao C, Wang G (2011) Density functional theory calculation of platinum surface segregation energy in Pt3Ni (111) surface doped with a third transition metal. Surf Sci 605:1577–1582

    Article  CAS  Google Scholar 

  158. Xu Y, Ruban AV, Mavrikakis M (2004) Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys. J Am Chem Soc 126:4717–4725

    Article  CAS  Google Scholar 

  159. Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skulason E, Bligaard T, Nørskov JK (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99:016105

    Article  CAS  Google Scholar 

  160. Li S-C, Zhang Z, Sheppard D, Kay BD, White JM Du Y, Lyubinetsky I, Henkelman G, Dohnalek Z (2008) Intrinsic diffusion of hydrogen on rutile TiO2 (110). J Am Chem Soc 130:9080–9088

    Google Scholar 

  161. Ferrin P, Kandoi S, Nilekar AU, Mavrikakis M (2012) Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: a DFT study. Surf Sci 606:679–689

    Google Scholar 

  162. Grabow LC, Gokhale AA, Evans ST, Dumesic JA, Mavrikakis M (2008) Mechanism of the water gas shift reaction of Pt: first principles, experiments and microkinetic modelling. J Phys Chem C 112:4608–4617

    Article  CAS  Google Scholar 

  163. Duan Z, Henkelman G (2014) CO oxidation on the Pd (111) surface. ACS Catal 4:3435–3443

    Article  CAS  Google Scholar 

  164. Shi C, O’grady CP, Peterson AA, Hansen HA, Nørskov JK (2013) Modeling CO2 reduction on Pt (111). Phys Chem Chem Phys 15:7114–7122

    Google Scholar 

  165. Greeley J, Mavrikakis M (2004) Alloy catalysts designed from first principles. Nat Mater 3:810–815

    Article  CAS  Google Scholar 

  166. Wang C, Li D, Chi M, Pearson J, Rankin RB, Greeley J, Duan Z, Wang G, Van der Vliet D, More KL, Markovic NM, Stamenkovic VR (2012) Rational development of ternary alloy electrocatalysts. J Phys Chem Lett 3:1668–1673

    Article  CAS  Google Scholar 

  167. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37

    Article  CAS  Google Scholar 

  168. He H, Lei Y, Xiao C, Chu D, Chen R, Wang G (2012) Molecular and electronic structures of transition-metal macrocyclic complexes as related to catalyzing oxygen reduction reactions: a density functional theory study. J Phys Chem C 116:16038–16046

    Article  CAS  Google Scholar 

  169. Liu K, Lei Y, Wang G (2013) Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes. J Chem Phys 139:204306

    Article  CAS  Google Scholar 

  170. Sun S, Jiang N, Xia D (2011) Density functional theory study of the oxygen reduction reaction on metalloporphyrins and metallophthalocyanines. J Phys Chem C 115:9511–9517

    Article  CAS  Google Scholar 

  171. Shi Z, Zhang J (2007) Density functional theory study of transition metal macrocyclic complexes’ dioxygen-binding abilities and their catalytic activities toward oxygen reduction reaction. J Phys Chem C 111:7084–7090

    Article  CAS  Google Scholar 

  172. Tsuda M, Dy ES, Kasai H (2005) Comparative study of O2 dissociation on various metalloporphyrins. J Chem Phys 122:244719

    Article  CAS  Google Scholar 

  173. Trojánek A, Langmaier J, Kvapilová H, Záliš S, Samec Z (2014) Inhibitory effect of water on the oxygen reduction catalyzed by cobalt(II) tetraphenylporphyrin. J Phys Chem A 118:2018–2028

    Article  CAS  Google Scholar 

  174. Duan Z, Wang G (2011) First-principles study of oxygen reduction reaction on Pt (111) surface modified by subsurface transition metal M (M = Ni Co, or Fe). Phys Chem Chem Phys 13:20178–20187

    Article  CAS  Google Scholar 

  175. Stamenkovic V, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497

    Article  CAS  Google Scholar 

  176. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892

    Article  CAS  Google Scholar 

  177. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 45:2897–2901

    Article  CAS  Google Scholar 

  178. Kattel S, Wang G (2013) A density functional theory study of oxygen reduction reaction on Me–N4 (Me = Fe Co, or Ni) clusters between graphitic pores. J Mater Chem A 1:10790–10797

    Article  CAS  Google Scholar 

  179. Kattel S, Wang G (2014) Reaction pathway for oxygen reduction reaction on FeN4 embedded graphene. J Phys Chem Lett 5:452–456

    Article  CAS  Google Scholar 

  180. Calle-Vallejo F, Martinez JI, Rossmeisl J (2011) Density functional studies of functionalized graphictic materials with late transition metals for oxygen reduction reactions. Phys Chem Chem Phys 13:15639–15643

    Article  CAS  Google Scholar 

  181. Kattel S, Atanassov P, Kiefer B (2014) A density functional theory study of oxygen reduction reaction on non-PGM Fe-Nx-C electrocatalysts. Phys Chem Chem Phys 16:13800–13806

    Article  CAS  Google Scholar 

  182. Saputro AG, Hideaki Kasai (2014) Oxygen reduction reaction on neighboring Fe-N4 and quaternary-N sites of pyrolized Fe/N/C catalyst. Phys Chem Chem Phys 17:3059

    Article  CAS  Google Scholar 

  183. Kattel S, Plamen A, Kiefer B (2013) Catalytic activity of Co-Nx/C electrocatalyst for oxygen reduction: a density functional theory study. Phys Chem Chem Phys 15:148–153

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongrong Chen or Guofeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, K., Lei, Y., Chen, R., Wang, G. (2016). Oxygen Electroreduction on M-N4 Macrocyclic Complexes. In: Zagal, J., Bedioui, F. (eds) Electrochemistry of N4 Macrocyclic Metal Complexes. Springer, Cham. https://doi.org/10.1007/978-3-319-31172-2_1

Download citation

Publish with us

Policies and ethics