Skip to main content

Local Fitness Meta-Models with Nearest Neighbor Regression

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9598))

Included in the following conference series:

Abstract

In blackbox function optimization, the results of fitness function evaluations can be used to train a regression model. This meta-model can be used to replace function evaluations and thus reduce the number of fitness function evaluations in evolution strategies (ES). In this paper, we show that a reduction of the number of fitness function evaluations of a (1+1)-ES is possible with a combination of a nearest neighbor regression model, a local archive of fitness function evaluations, and a comparatively simple meta-model management. We analyze the reduction of fitness function evaluations on set of benchmark functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong, M.: Basic Linear Geostatistics. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  2. Bouzarkouna, Z., Auger, A., Ding, D.Y.: Local-meta-model CMA-ES for partially separable functions. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 869–876 (2011)

    Google Scholar 

  3. Cruz-Vega, I., Garcia-Limon, M., Escalante, H.J.: Adaptive-surrogate based on a neuro-fuzzy network and granular computing. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 761–768 (2014)

    Google Scholar 

  4. Delgado, M.F., Cernadas, E., Barro, S., Amorim, D.G.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15(1), 3133–3181 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Elsayed, S.M., Ray, T., Sarker, R.A.: A surrogate-assisted differential evolution algorithm with dynamic parameters selection for solving expensive optimization problems. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), pp. 1062–1068 (2014)

    Google Scholar 

  6. Jin, Y., Olhofer, M., Sendhoff, B.: On evolutionary optimization with approximate fitness functions. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 786–793 (2000)

    Google Scholar 

  7. Kramer, O., Schlachter, U., Spreckels, V.: An adaptive penalty function with meta-modeling for constrained problems. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), pp. 1350–1354 (2013)

    Google Scholar 

  8. Kruisselbrink, J.W., Emmerich, M.T.M., Deutz, A.H., Bäck, T.: A robust optimization approach using kriging metamodels for robustness approximation in the CMA-ES. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2010)

    Google Scholar 

  9. Liao, Q., Zhou, A., Zhang, G.: A locally weighted metamodel for pre-selection in evolutionary optimization. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), pp. 2483–2490 (2014)

    Google Scholar 

  10. Loshchilov, I., Schoenauer, M., Sebag, M.: A mono surrogate for multiobjective optimization. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 471–478 (2010)

    Google Scholar 

  11. Loshchilov, I., Schoenauer, M., Sebag, M.: Self-adaptive surrogate-assisted covariance matrix adaptation evolution strategy. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 321–328 (2012)

    Google Scholar 

  12. Loshchilov, I., Schoenauer, M., Sebag, M.: Intensive surrogate model exploitation in self-adaptive surrogate-assisted cma-es (saacm-es). In: Genetic and Evolutionary Computation Conference (GECCO), pp. 439–446 (2013)

    Google Scholar 

  13. Martínez, S.Z., Coello, C.A.C.: A multi-objective meta-model assisted memetic algorithm with non gradient-based local search. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 537–538 (2010)

    Google Scholar 

  14. Preuss, M., Rudolph, G., Wessing, S.: Tuning optimization algorithms for real-world problems by means of surrogate modeling. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 401–408 (2010)

    Google Scholar 

  15. Rechenberg, I.: Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart (1973)

    Google Scholar 

  16. Rosales-Pérez, A., Coello, C.A.C., Gonzalez, J.A., García, C.A.R., Escalante, H.J.: A hybrid surrogate-based approach for evolutionary multi-objective optimization. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), pp. 2548–2555 (2013)

    Google Scholar 

  17. Verbeeck, D., Maes, F., Grave, K.D., Blockeel, H.: Multi-objective optimization with surrogate trees. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 679–686 (2013)

    Google Scholar 

  18. Willmes, L., Bäck, T., Jin, Y., Sendhoff, B.: Comparing neural networks and kriging for fitness approximation in evolutionary optimization. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), pp. 663–670 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Kramer .

Editor information

Editors and Affiliations

A Benchmark Functions

A Benchmark Functions

In this work, we employ the following benchmark problems:

  • Sphere \(f(\mathbf {x}) = \sum _{i=1}^d (x_i)^2\)

  • Rosenbrock \(f(\mathbf {x})= \sum _{i=1}^{d-1}\left( 100(x_i^2-x_{i+1})^2+(x_i-1)^2\right) \)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kramer, O. (2016). Local Fitness Meta-Models with Nearest Neighbor Regression. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9598. Springer, Cham. https://doi.org/10.1007/978-3-319-31153-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31153-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31152-4

  • Online ISBN: 978-3-319-31153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics