Skip to main content

Design and Operation of a Large, Low Background, 50 mK Cryostat for the Cryogenic Dark Matter Search

  • Chapter
  • First Online:
Book cover Cryostat Design

Part of the book series: International Cryogenics Monograph Series ((ICMS))

  • 1796 Accesses

Abstract

Cryostats that operate below 1 K have additional requirements involving the need for extremely small heat leaks and alternative cooling methods. This chapter describes the design and operation of a cryostat operating at 50 mK for the Cryogenic Dark Matter Search experiment. Included are descriptions of the cooling and thermal insulation system, seal design, fabrication and operations. Valuable data is provided on the thermal conductivity of Kevlar and the calculation of joint conductance. The particular issue of using only radiopure materials in the cryostat construction is also covered. A list of lessons learned from the cryostat operation is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Barruci, Measurement of thermal conductivity of the supports of CUORE cryostat. Cryogenics 48, 166–168 (2008)

    Article  ADS  Google Scholar 

  2. M. Barucci, Low temperature thermal conductivity of Kapton and Upilex. Cryogenics 40, 145–147 (2000)

    Article  ADS  Google Scholar 

  3. CDMS at Fermilab (2003). Retrieved from http://ppd.fnal.gov/experiments/cdms/. http://titus.stanford.edu/public/photos/cdms_icebox.jpg

  4. I. Didschuns, Thermal conductance measurements of bolted copper to copper joints at sub-Kelvin temperatures. Cryogenics 44, 293–299 (1992)

    Google Scholar 

  5. L. Duband, Thermal isolation of large loads at low temperature using Kevlar rope. Cryogenics, 643–647 (1993)

    Google Scholar 

  6. F. Fickett, Oxygen free copper at 4 K: resistance and magnetoresistance. IEEE Trans. Magn. 19(3) (1993)

    Google Scholar 

  7. G. Frossati, Experimental techniques: methods for cooling below 300 mK. J. Low Temp. Phys. 87(3/4) (1992)

    Google Scholar 

  8. J. Hust, Low-temperature thermal conductivity of two fibre-epoxy composites. Cryogenics, 126–128 (1975)

    Google Scholar 

  9. J. Jensen, Brookhaven National Laboratory Selected Cryogenic Data Notebook (1980)

    Google Scholar 

  10. P. Kittel, Thermal conductance of gold plated metallic contacts at liquid helium temperatures. Adv. Cryog. Eng. 37, 241–248 (1992)

    Google Scholar 

  11. LBL. (1993). IVC Seal Design

    Google Scholar 

  12. E. Marquardt, Cryogenic Material Properties Database. 11th International Cryocooler Conference (Keystone, Co, 2000)

    Google Scholar 

  13. M. Nilles, Effects of oxidation and roughness on Cu contact resistance from 4 to 290 K. Adv. Cryog. Eng. 34 (1987)

    Google Scholar 

  14. NIST (n.d.), NIST Materials Measurement Lab, Cryogenic Technologies Group, Material Properties. Retrieved from http://cryogenics.nist.gov/MPropsMAY/materialproperties.htm

  15. J. Olson, Thermal conductivity of some common cryostat materials between 0.05 and 2 K. Cryogenics 33 (1993)

    Google Scholar 

  16. I. Peroni, Thermal conductivity of manganin below 1 K. Nucl. Phys. B 78, 573–575 (1999)

    Article  Google Scholar 

  17. D. Bauer, PAC Meeting, March 30, (2007). Retrieved from https://www.fnal.gov/directorate/program_planning/March2007PACPublic/BauerPAC03_07.pdf

  18. M.D. Resources, Lake Vermilion-Soudan Underground Mine State Park (2015). Retrieved from http://www.dnr.state.mn.us/state_parks/lake_vermilion_soudan/index.html

  19. V. Risegari, The Art of Cryogenics: Low Temperature Experimental Techniques (Elsevier, Oxford, UK, 2008)

    Google Scholar 

  20. D. Rule, Thermal conductivity of polypyromellitimide film with alumina filler from 4.2 to 300 K. Cryogenics 36, 283–290 (1996)

    Article  ADS  Google Scholar 

  21. M. Runyan, Thermal conductivity of thermally-isolating polymeric and composite structural support materials between 0.3 and 4 K. Cryogenics 48, 448–454 (2008)

    Article  ADS  Google Scholar 

  22. J. Sander, Fermilab Today (2015). Retrieved from http://www.fnal.gov/pub/today/archive/archive_2015/today15-02-06.html

  23. R. Schmitt, Application of cryocoolers to a vintage dilution refrigerator. Adv. Cryog. Eng. (2011)

    Google Scholar 

  24. R. Schmitt, Thermal conductance measurements of bolted copper joints for SuperCDMS. Cryogenics (2015)

    Google Scholar 

  25. Y. Touloukian, Thermophysical Properties of Matter: Thermal Conductivity, Metallic Elements and Alloys, vol. 1 (IFI/Plenum, New York, 1970)

    Google Scholar 

  26. G. Ventura, Low temperature conductivity of Kevlar. Crygenics, 489–491 (2000)

    Google Scholar 

  27. P. Wikus, The electrical resistivity and thermal conductivity of Ti 15V–3Cr–3Sn–3Al at cryogenic temperatures. Cryogenics 51, 41–44 (2011)

    Article  ADS  Google Scholar 

  28. A. Woodcraft, Thermal conductivity measurements of pitch-bonded graphite at millikelvin temperatures. Cryogenics 49, 159–164 (2009a)

    Google Scholar 

  29. A. Woodcraft, Thermal design and performance of the SCUBA-2 instrument 1-K and mK systems. Cryogenics 49, 504–513 (2009b)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Schmitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmitt, R.L. (2016). Design and Operation of a Large, Low Background, 50 mK Cryostat for the Cryogenic Dark Matter Search. In: Weisend II, J. (eds) Cryostat Design. International Cryogenics Monograph Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31150-0_8

Download citation

Publish with us

Policies and ethics