Skip to main content

Neurological and Psychosocial Development in Adolescence

  • Chapter
  • First Online:
Congenital Heart Disease and Adolescence

Abstract

The last 20 years, knowledge on human brain development has grown exponentially due to magnetic resonance imaging (MRI) and functional MRI. At the age of 6, the brain has reached his adult size. From that point on, connections and synapses continue to develop in order to reach a complete network of neuronal pathways. This chapter covers the description of normal brain development in adolescence and its relation to cognitive functioning. We discuss changes in white and gray matter, sex specificity, and changes in cortical thickness. On a functional cognitive level, adolescents with CHD display a high variability, usually below expectation. A high percentage of them need remedial services during their school career. Attention and executive functioning are mostly affected. Visual-spatial problems, difficulty with reading and orthographic skills, and reduced social cognition are also mentioned. Smaller brain volumes and mainly white and gray matter injury in frontoparietal areas, the uncinate fasciculus (UF), and the middle cerebellar peduncle (MCP) are highly associated with the experienced cognitive weaknesses. In the second part of this chapter, we look into psychosocial development during adolescence. The life phase of adolescence onto adulthood is characterized by constant change and may especially pose challenges for those afflicted with chronic illness. Although the majority of patients with CHD seem to tackle identity formation issues in a normal way, there is a subgroup significantly at risk for adapting maladjusted identity processes, leaving them vulnerable for constant worrying about where their lives should lead them, psychosocial difficulties, lowered self-esteem, and higher levels of depressive symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andropoulos D, Hunter J, Nelson D et al (2010) Brain immaturity is associated with brain injury before and after neonatal cardiac surgery with high-flow bypass and cerebral oxygenation monitoring. J Thorac Cardiovasc Surg 139(3):543–556

    Article  PubMed  Google Scholar 

  2. Ardila A, Rosselli M, Matute E et al (2011) Gender differences in cognitive development. Dev Psychol 47:984–990

    Article  PubMed  Google Scholar 

  3. Arnett JJ (2000) Emerging adulthood – a theory of development from the late teens through the twenties. Am Psychol 55:469–480

    Article  CAS  PubMed  Google Scholar 

  4. Arnett JJ (2004) Emerging adulthood the winding road from the late teens through the twenties. Oxford University Press, Oxford

    Google Scholar 

  5. Beaulieu C, Plewes C, Paulson L et al (2005) Imaging brain connectivity in children with diverse reading ability. Neuroimage 25:1266–1271

    Article  PubMed  Google Scholar 

  6. Bechtel N, Kobel M, Penner I et al (2009) Decreased fractional anisotropy in the middle cerebellar peduncle in children with epilepsy and/or attention deficit/hyperactivity disorder: a preliminary study. Epilepsy Behav 15(3):294–298

    Article  PubMed  Google Scholar 

  7. Bellinger D, Wypij D, Rivkin M et al (2011) Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure. Neuropsychological assessment and structural brain imaging. Circulation 124:1361–1369

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ben-Shachar M, Dougherty R, Wandell B (2007) White matter pathways in reading. Curr Opin Neurobiol 17:258–270

    Article  CAS  PubMed  Google Scholar 

  9. Blakemore S (2012) Imaging brain development. Neuroimage 61:397–406

    Article  PubMed  Google Scholar 

  10. Blakemore S, Robbins T (2012) Decision-making in the adolescent brain. Nat Neurosci 15:1184–1191

    Article  CAS  PubMed  Google Scholar 

  11. Boes A, Tranel D, Anderson S et al (2008) Right anterior cingulated: a neuroanatomical correlate of aggression and defiance in boys. Behav Neurosci 122:677–684

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bosma HA (1985) Identity development in adolescence. Cah Psychol Cogn 5:453–454

    Google Scholar 

  13. Bramen J, Hranilovich J, Dhal R et al (2011) Puberty influences medial temporal lobe and cortical grey matter maturation differently in boys than girls matched for sexual maturity. Cereb Cortex 21(3):636–646

    Article  PubMed  Google Scholar 

  14. Bramen J, Hranilovich J, Dahl R et al (2012) Sex matters during adolescence: testosterone-related cortical thickness maturation differs between boys and girls. PLoS One 7(3):e33850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brewster R, King T, Burns T et al (2015) White matter integrity dissociates verbal memory and auditory attention span in emerging adults with congenital heart disease. J Int Neuropsychol Soc 21:22–33

    Article  PubMed  Google Scholar 

  16. Cassidy A, White M, DeMaso D et al (2015) Executive function in children and adolescents with critical cyanotic congenital heart disease. J Int Neuropsychol Soc 20:34–49

    Article  Google Scholar 

  17. Cromer J, Shembri A, Harel B et al (2015) The nature and rate of cognitive maturation from late childhood to adulthood. Front Psychol 6(704):1–12

    Google Scholar 

  18. Crossland DS, Jackson SP, Lyall R, Burn J, O’Sullivan JJ (2005) Employment and advice regarding careers for adults with congenital heart disease. Cardiol Young 15:391–395

    Article  PubMed  Google Scholar 

  19. Dennison M, Whittle S, Yücel M et al (2013) Mapping subcortical brain maturation during adolescence: evidence of hemispheric and sex specific longitudinal changes. Dev Sci 16(5):772–791

    Article  PubMed  Google Scholar 

  20. Erikson EH (1963) Identity, youth, and crisis. Norton, New York

    Google Scholar 

  21. Erikson EH (1980) Identity and the life cycle. Norton, New York

    Google Scholar 

  22. Erus G, Battapady H, Satterthwaite T et al (2015) Imaging patterns of brain development and their relationship to cognition. Cereb Cortex 25:1676–1684

    Article  PubMed  Google Scholar 

  23. Fair D, Dosenbach N, Church J et al (2007) Development of distinct control networks through segregation and integration. Proc Natl Acad Sci U S A 104(33):13507–13512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Frith C, Frith U (2007) Social cognition in humans. Curr Biol 17:724–732

    Article  Google Scholar 

  25. Galvan A, Hare T, Parra C et al (2006) Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. J Neurosci 26:6885–6892

    Article  CAS  PubMed  Google Scholar 

  26. Giedd J, Castellanos F, Rajapakse J et al (1997) Sexual dimorphism of the developing human brain. Prog Neuropsychopharmacol Biol Psychiatry 21(8):1185–1201

    Article  CAS  PubMed  Google Scholar 

  27. Giedd J, Blumenthal J, Jeffries N et al (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863

    Article  CAS  PubMed  Google Scholar 

  28. Giedd J, Clasen L, Lenroot R et al (2006) Puberty-related influences on brain development. Mol Cell Endocrinol 245–255:154–162

    Article  Google Scholar 

  29. Goossens E et al (2011) Transfer of adolescents with congenital heart disease from pediatric cardiology to adult health care: an analysis of transfer destinations. J Am Coll Cardiol 57:2368–2374

    Article  PubMed  Google Scholar 

  30. Havighurst RJ (1972) Developmental tasks and education, 3rd edn. McKay, D. Co, New York

    Google Scholar 

  31. Heinrichs A, Holschen A, Krings T et al (2014) Neurologic and psycho-intellectual outcome related to structural brain imaging in adolescents and young adults after neonatal arterial switch operation for transposition of the great arteries. J Thorac Cardiovasc Surg 148:2190–2199

    Article  PubMed  Google Scholar 

  32. Hu S, Pruessner J, Coupé P et al (2013) Volumetric analysis of medial temporal lobe structures in brain development from childhood to adolescence. Neuroimage 74:279–287

    Article  Google Scholar 

  33. Kamphuis M, Vliegen HW, Verloove-Vanhorick SP, Ottenkamp J, Vogels T (2005) Employment and work-related handicaps in young adults with congenital heart disease. Ned Tijdschr Geneeskd 149:1107–1112

    Google Scholar 

  34. Karsdorp PA, Everaerd W, Kindt M, Mulder BJ (2007) Psychological and cognitive functioning in children and adolescents with congenital heart disease: a meta-analysis. J Pediatr Psychol 32:527–541

    Article  PubMed  Google Scholar 

  35. Klingberg T, Vaidya C, Gabrieli J et al (1999) Myelination and organization of the frontal white matter in children: a diffusion tensor MRI study. Neuroreport 10:2817–2821

    Article  CAS  PubMed  Google Scholar 

  36. Kobel M, Bechtel N, Specht K et al (2010) Structural and functional images approaches in attention deficit/hyperactivity disorder: does the temporal lobe play a key role? Psychiatry Res 183(3):230–236

    Article  PubMed  Google Scholar 

  37. Koolschijn C, Crone E (2013) Sex differences and structural brain maturation from childhood to early adulthood. Dev Cogn Neurosci 5:106–118

    Article  PubMed  Google Scholar 

  38. Koolschijn C, Peper J, Crone E (2014) The influence of sex steroids on structural brain maturation in adolescence. PLoS One 9(1):e83929

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lebel C, Beaulieu C (2011) Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci 31(30):10937–10947

    Article  CAS  PubMed  Google Scholar 

  40. Lenroot R, Gogtay N, Greenstein D et al (2007) Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage 36:1065–1073

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu F, Day M, Muniz L et al (2008) Activation of estrogen receptor-beta regulates hippocampal synaptic plasticity and improves memory. Nat Neurosci 11(3):334–343

    Article  CAS  PubMed  Google Scholar 

  42. Loy R, Gerlag J, McEwen B (1988) Autoradiographic localization of estradiol-binding in the rat hippocampal formation and entorhinal cortex. Brain Res 467(2):245–251

    Article  CAS  PubMed  Google Scholar 

  43. Lu L, Leonard C, Thompson P et al (2007) Normal developmental changes in inferior frontal grey matter are associated with improvement in phonological processing: a longitudinal MRI analysis. Cereb Cortex 17:1092–1099

    Article  PubMed  Google Scholar 

  44. Lu L, Dapretto M, O’Hare ED et al (2009) Relationships between brain activation and brain structure in normally developing children. Cereb Cortex 19:2595–2604

    Article  PubMed  PubMed Central  Google Scholar 

  45. Luyckx K, Goossens E, Van Damme C, Moons P, I-DETACH Investigators (2011) Identity formation in adolescents with congenital cardiac disease: a forgotten issue in the transition to adulthood. Cardiol Young 21:411–420

    Article  PubMed  Google Scholar 

  46. Luyckx K, Goossens L, Soenens B, Beyers W, Vansteenkiste M (2005) Identity statuses based on 4 rather than 2 identity dimensions: extending and refining Marcia’s paradigm. J Youth Adolesc 34:605–618

    Article  Google Scholar 

  47. Luyckx K, Goossens L, Soenens B, Beyers W (2006) Unpacking commitment and exploration: preliminary validation of an integrative model of late adolescent identity formation. J Adolesc 29:361–378

    Article  PubMed  Google Scholar 

  48. Luyckx K, Schwartz SJ, Berzonsky MD, Soenens B, Vansteenkiste M, Smits I, Goossens L (2008) Capturing ruminative exploration: extending the four-dimensional model of identity formation in late adolescence. J Res Pers 42:58–82

    Article  Google Scholar 

  49. Luyckx K, Seiffge-Krenke I, Schwartz SJ, Goossens L, Weets I, Hendrieckx C, Groven C (2008) Identity development, coping, and adjustment in emerging adults with a chronic illness: the sample case of type 1 diabetes. J Adolesc Health 43:451–458

    Article  PubMed  Google Scholar 

  50. Lyon ME, Kuehl K, McCarter R (2006) Transition to adulthood in congenital heart disease: missed adolescent milestones. J Adolesc Health 39:121–124

    Article  PubMed  Google Scholar 

  51. Marcia JE (1980) Identity in adolescence. In: Handbook of adolescent psychology. Wiley, New York, pp 159–187

    Google Scholar 

  52. Marcia JE (1989) Identity diffusion differentiated. Proc XXIV Int Congr Psychol 7:289–294

    Google Scholar 

  53. McMurray R, Kendeall L, Parsons JM, Quirk J, Veldtman GR, Lewin LJP, Sloper P (2001) A life less ordinary: growing up and coping with congenital heart disease. Coron Health Care 5:51–57

    Article  Google Scholar 

  54. Meeus W (1996) Studies on identity development in adolescence: an overview of research and some new data. J Youth Adolesc 25:569–598

    Article  Google Scholar 

  55. Miatton M (2015) Neuropsychological aspects in children and adolescents with ConHD. In: Clinical psychology and congenital heart disease – lifelong psychological aspects and interventions. Springer, Milan

    Google Scholar 

  56. Miller S, McQuillen P, Hamrick S et al (2007) Abnormal brain development in newborns with congenital heart disease. N Engl J Med 357(9):1928–1938

    Article  CAS  PubMed  Google Scholar 

  57. Moons P, Bovijn L, Budts W, Belmans A, Gewillig M (2010) Temporal trends in survival to adulthood among patients born with congenital heart disease from 1970 to 1992 in Belgium. Circulation 122:2264–2272

    Article  PubMed  Google Scholar 

  58. Mussatto KA, Sawin KJ, Schiffman R, Leske J, Simpson P, Marino BS (2014) The importance of self-perceptions to psychosocial adjustment in adolescents with heart disease. J Pediatr Health Care 28:251–261

    Article  PubMed  Google Scholar 

  59. Nguyen T, McCracken J, Ducharme S et al (2013) Testosterone-related cortical maturation across childhood and adolescence. Cereb Cortex 23(6):1424–1432

    Article  PubMed  Google Scholar 

  60. Ostby Y, Tamnes C, Fjell A et al (2012) Dissociating memory processes in the developing brain: the role of hippocampal volume and cortical thickness in recall after minutes versus days. Cereb Cortex 22(5):381–390

    Article  PubMed  Google Scholar 

  61. Paus T (2005) Mapping brain maturation and cognitive development during adolescence. Trends Cogn Neurosci 9:60–68

    Article  Google Scholar 

  62. Paus T, Zijdenbos A, Worsley K et al (1999) Structural maturation of neural pathways in children and adolescents: in vivo study. Science 283(5409):1908–1911

    Article  CAS  PubMed  Google Scholar 

  63. Paus T, Keshavan M, Giedd J (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9:947–957

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Piaget J (1952) The origins of intelligence in children. International University Press, New York

    Book  Google Scholar 

  65. Pierpaoli C, Basser P (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906

    Article  CAS  PubMed  Google Scholar 

  66. Pike NA, Evangelista LS, Doering LV, Eastwood JA, Lewis AB, Child JS (2012) Sex and age differences in body-image, self-esteem, and body mass index in adolescents and adults after single-ventricle palliation. Pediatr Cardiol 33:705–712

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pinquart M, Pfeiffer JP (2015) Solving developmental tasks in adolescents with a chronic physical illness or physical/sensory disability: a meta-analysis. Int J Disabil Dev Educ 62:249–264

    Article  Google Scholar 

  68. Porter J, Collins P, Muetzel R (2011) Associations between cortical thickness and verbal fluency in childhood, adolescence and young adulthood. Neuroimage 55(4):1865–1877

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rivkin M, Watson C, Scopppettuolo L et al (2013) Adolescents with D-transposition of the great arteries repaired in early infancy demonstrate reduced white matter microstructure associated with clinical risk factors. J Thorac Cardiovasc Surg 146(3):543–549

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rollins C, Watson C, Asaro L et al (2014) White matter microstructure and cognition in adolescents with congenital heart disease. J Pediatr 165:936–944

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sato J, Salum G, Gadelha A et al (2015) Decreased centrality of subcortical regions during the transition to adolescence: a functional connectivity study. Neuroimage 104:44–51

    Article  PubMed  Google Scholar 

  72. Schwartz SJ, Zamboanga BL, Luyckx K, Meca A, Ritchie RA (2013) Identity in emerging adulthood: reviewing the field and looking forward. Emerg Adulthood 1:96–113

    Article  Google Scholar 

  73. Shaw P, Kabani N, Lerch J et al (2008) Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 28:3586–3594

    Article  CAS  PubMed  Google Scholar 

  74. Shilling C, Kühn S, Paus T et al (2013) Cortical thickness of superior frontal cortex predicts impulsiveness and perceptual reasoning in adolescence. Mol Psychiatry 18:624–630

    Article  Google Scholar 

  75. Skranes J, Vangberg T, Kulseng S et al (2007) Clinical findings and white matter abnormalities seen on diffusion tensor imaging in adolescents with very low birth weight. Brain 130:654–666

    Article  CAS  PubMed  Google Scholar 

  76. Somerville L, Jones R, Casey B (2010) A time of change: behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain Cogn 72:124–133

    Article  PubMed  Google Scholar 

  77. Sowell E, Delis D, Stiles J et al (2001) Improved memory functioning and frontal lobe maturation between childhood and adolescence: a structural MRI study. J Int Neuropsychol Soc 7(3):312–322

    Article  CAS  PubMed  Google Scholar 

  78. Sowell E, Peterson B, Thompson P et al (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315

    Article  CAS  PubMed  Google Scholar 

  79. Sowell E, Thompson P, Leonard C et al (2004) Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 24:8223–8231

    Article  CAS  PubMed  Google Scholar 

  80. Squeglia L, Jacobus J, Sorg S et al (2013) Early adolescent cortical thinning is related to better neuropsychological performance. J Int Neuropsychol Soc 19:962–970

    Article  PubMed  PubMed Central  Google Scholar 

  81. Stevens M, Pearlson G, Calhoun V (2009) Changes in the interaction of resting-state neural networks from adolescence to adulthood. Hum Brain Mapp 30(8):2356–2366

    Article  PubMed  Google Scholar 

  82. Sullivan E, Zahr N, Rohlfing T et al (2010) Fiber tracking functionally distinct components of the internal capsule. Neuropsychologia 48:4155–4163

    Article  PubMed  PubMed Central  Google Scholar 

  83. Takeuchi H, Sekiguchi A, Taki Y et al (2010) Training of working memory impacts structural connectivity. J Neurosci 30:3297–3303

    Article  CAS  PubMed  Google Scholar 

  84. Taki Y, Thyreau B, Hashizume H et al (2013) Linear and curvilinear correlations of brain white matter volume, fractional anisotropy, and mean diffusivity with age using voxel-based and region of interest analyses in 246 healthy children. Hum Brain Mapp 34:1842–1865

    Article  PubMed  Google Scholar 

  85. Tamnes C, Fjell A, Ostby Y et al (2011) The brain dynamics of intellectual development: waxing and waning white and gray matter. Neuropsychologia 49(13):3605–3611

    Article  PubMed  Google Scholar 

  86. Turken A, Whitfield-Gabrieli S, Bammer R et al (2008) Cognitive processing speed and the structure of white matter pathways: convergent evidence from normal variation and lesion studies. Neuroimage 42:1032–1044

    Article  PubMed  PubMed Central  Google Scholar 

  87. Van Leijenhorst L, Westenberg P, Crone E (2008) A developmental study of risky decisions on the cake gambling task: age and gender analyses of probability estimation and reward evaluation. Dev Neuropsychol 33:179–196

    Article  PubMed  Google Scholar 

  88. Van Rijen EHM et al (2003) Psychosocial functioning of the adult with congenital heart disease: a 20–33 years follow-up. Eur Heart J 24:673–683

    Article  PubMed  Google Scholar 

  89. Von Der Heide R, Skipper L, Klobusicky E et al (2013) Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain 136:1692–1707

    Article  Google Scholar 

  90. Von Rhein M, Scheer I, Loenneker T et al (2011) Structural brain lesions in adolescents with congenital heart disease. J Pediatr 158:984–989

    Article  Google Scholar 

  91. Von Rhein M, Buchmann A, Hagmann C et al (2014) Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease. Brain 137:268–276

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marijke Miatton MSc(Psych), PhD(Medical Science) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miatton, M., Sarrechia, I. (2016). Neurological and Psychosocial Development in Adolescence. In: Schwerzmann, M., Thomet, C., Moons, P. (eds) Congenital Heart Disease and Adolescence. Congenital Heart Disease in Adolescents and Adults. Springer, Cham. https://doi.org/10.1007/978-3-319-31139-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31139-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31137-1

  • Online ISBN: 978-3-319-31139-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics