Skip to main content

Allocative Challenges of Bioenergy Use

  • Chapter
  • First Online:
Concepts and Instruments for a Rational Bioenergy Policy

Part of the book series: Lecture Notes in Energy ((LNEN,volume 55))

  • 369 Accesses

Abstract

The chapter “Allocative Challenges of Bioenergy Use” conducts an economic analysis of the problems that arise when allocation decisions are coordinated by market forces alone, and the challenges that apply to regulative interventions in the market mechanism. As central normative criteria, the requirements of efficiency and sustainability are discussed. It is shown that when allocative problems such as the steering of biomass flows and technology choices, the setting of innovation incentives, and the steering of location and sourcing decisions are solved by the market mechanism alone, the outcome will not be efficient. Several market failures are identified which distort allocation decisions, namely environmental externalities, security of supply externalities, knowledge and learning externalities, the occurrence of market power in the energy sector, and dynamic market failures that inhibit market adjustment processes. Moreover, interactions between market actors are subject to information problems and transaction costs, and even if the market outcome was efficient, it need not be sustainable. Regulative interventions, on the other hand, are complicated by conflicting aims, information problems and transaction costs, the multi-level governance nature of the regulative problem, and conflicts between political and economic rationality considerations. For assessing policy interventions, requirements for a rational bioenergy policy are defined, which take the constraints imposed by imperfect information and political feasibility into account. However, the analysis demonstrates that the multiplicity of relevant, interacting market failures and sources of potential government failures makes compliance not only with sustainability and efficiency criteria, but also with rational bioenergy policy requirements, a challenging task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If all such reallocations were undertaken, the outcome would be Pareto efficient, making the Kaldor-Hicks criterion a necessary condition for Pareto optimality (Stavins et al. 2003; Common and Stagl 2005: 311). However, the criterion’s focus on potential compensations which need not actually occur is subject to criticism, particularly in an intergenerational setting (Woodward and Bishop 1995; Azar 2000; Padilla 2002).

  2. 2.

    However, apart from perfect substitutability of the resources in question, the Hartwick rule requires that several other far-reaching assumptions hold, such as constant population, technology and preferences, and an intertemporally optimal allocation of resources which requires perfect foresight (Howarth 1997).

  3. 3.

    Moreover, it can be argued that bioenergy use always implies trade-offs with other forms of natural capital formation—a hectare of land used for energetic biomass production may contribute to the substitution of fossil fuels and GHG mitigation, and may possibly even enhance agricultural biodiversity, yet environmental benefits associated with a renaturation of the same area are foregone [cf. Jakubowski et al. (1997: 18), who find that, under scarcity, any form of environmental conservation is associated with environmental costs, if only in the form of opportunity costs].

  4. 4.

    Given that sustainability implies a “macro-perspective” (Woodward and Bishop 1995), it can be argued that sustainable bioenergy use is of limited usefulness, if the overall sustainability of the agricultural land use system is not ensured (for sustainability risks of agricultural production in general, see e.g. Henle et al. 2008; Hirschfeld et al. 2008; Oppermann et al. 2009). However, public incentives for bioenergy use add to existing sustainability problems, so that a “micro-perspective” can be justified, at least in the shorter term.

  5. 5.

    Jakubowski et al. (1997: 51) name “elasticity” as a third economic requirement, which calls for an elastic design of decisions about aims and their incremental implementation, in order to reflect uncertainty and the risk of incurring irreversibilities. However, elasticity entails trade-offs with the creation of constant framework conditions and planning security for economic actors, which shall be discussed in more detail in Chap. 3. For this reason, the requirement is neglected in the overview.

  6. 6.

    Employing the following assumptions (Fritsch 2011: 26): (i) The set of resources is given; (ii) No process and product innovation; (iii) Preferences are given and unchanging; (iv) Producers and consumers are free to choose between alternatives; (v) Products are homogeneous; (vi) Numerous buyers and sellers with small market shares; (vii) Perfect information and market transparency; (viii) Unlimited mobility of input factors and goods; (ix) Unlimited divisibility of input factors and goods; (x) Adjustment is infinitely quick; and (xi) No externalities, i.e. private costs equal social costs.

  7. 7.

    Strictly speaking, innovation is not considered in the perfect competition model’s static perspective—with perfect information and infinite adjustment speed, innovations would be taken up instantaneously by competitors, resulting in few incentives to invest in them (Mansfield 1994: 536f.).

  8. 8.

    Externalities arise when an actor engages in an activity that influences the well-being of a bystander and yet neither pays nor receives any compensation for that effect (cf. Baumol and Oates 1988: 17f.). Externalities cause private costs which determine private allocation decisions to deviate from social costs: In the presence of negative externalities, more of a good is produced than is socially optimal, while with positive externalities, too little is produced. Public goods, which are characterised by non-rivalry in consumption and/or non-excludability of potential consumers (Head 1962), are closely connected to externalities, in that many externalities arise from the public character of goods (e.g. investments in public goods knowledge or biodiversity produce external benefits) (Bator 1958: 18f.; Baumol and Oates 1988). Consequently, market failures arising from externalities and public goods are treated jointly here.

  9. 9.

    Moreover, “carbon neutrality” succumbs to a baseline error, in that the carbon sequestration that would occur if plants were not harvested and continued to absorb carbon from the air is neglected (Haberl et al. 2012).

  10. 10.

    In industrialised countries, where agricultural systems are already highly intensified and the agriculturally used area cannot easily be extended, additional biomass demand can primarily be met through the reactivation of fallow land, conversion of extensively used grassland, and productivity increases. In developing countries, where capital for an intensification of agricultural production is scarce relative to natural land availability, it is more likely that additional demand is met by expanding the agricultural area (FAO 2008; Kampman et al. 2010; Meyer et al. 2010).

  11. 11.

    The divergence between marginal social and private rates of return on R&D investments can be significant—typical estimates of marginal social rates of return range from 30 to 50 %, while private marginal rates of return on investments in physical capital typically lie between 7 and 15 % [see Pizer and Popp (2008) for an overview of studies].

  12. 12.

    Moreover, gas and electricity grids constitute classic natural monopolies; market failures arising from, for example, limited access and uncompetitive transmission prices shall be neglected here, given that natural monopolies are typically heavily regulated (cf. Bundeskartellamt and Bundesnetzagentur 2013).

  13. 13.

    In the German electricity sector, for example, large-scale fossil fuel and nuclear plants are traditionally the domain of four major electricity generating companies with a high combined market share (E.ON, RWE, Vattenfall, and EnBW), a structure going back to before the liberalisation of the electricity market. However, regulatory interventions, the expansion of renewable energies and the decommissioning of eight nuclear plants in 2011 have caused the market share of these companies to decline significantly in recent years (Bundeskartellamt and Bundesnetzagentur 2013: 19).

  14. 14.

    Inter alia, this can be due to a normative value being assigned to the maintenance of existing agricultural structures (cf. Gawel 2009: 547).

  15. 15.

    Of course, current levels of bioenergy use are determined by policy interventions, which distort resource allocation between food and energetic uses; nonetheless, if future fossil fuel price developments were to endow energetic uses with a higher ability to pay than food-related uses (following e.g. a comprehensive internalisation of external costs), the consequences for food security would be problematic.

  16. 16.

    Dynamic efficiency is a prerequisite for sustainability, in as far as that it ensures that the highest feasible constant level of utility is realised over time (Stavins et al. 2003).

  17. 17.

    For a more detailed analysis of relevant aims in the German and European case, see Sect. 4.1.1.

  18. 18.

    Uncertainties in climate models, for example, arise mainly from natural climate variability, an incomplete understanding of earth system processes and imperfections in their modelling representation, and uncertainty about future levels of anthropogenic GHG emissions (Jenkins et al. 2009: 14ff.).

  19. 19.

    Some parts of this section have been used in Purkus et al. (2015).

  20. 20.

    Especially important for net land use change results are assumptions concerning the crop mix used to produce biofuels and the integration of co-products, yield growth, the allocation of production changes to region and land type, and consumption changes in response to changes in relative prices (Keeney and Hertel 2009; Edwards et al. 2010; Laborde 2011; Broch et al. 2013).

  21. 21.

    Political transaction costs also encompass the costs of establishing, operating and changing the order of the political system itself, for example, through constitutional reforms and the creation of new administrative bodies (cf. Richter and Furubotn 2003: 63). As the political system can be assumed as given in the bioenergy context, these shall be neglected here.

  22. 22.

    In allocating responsibilities for environmental policy, the EU has adopted the principle of the appropriate level of action and the subsidiarity principle (Knill and Tosun 2008: 152). Nonetheless, in applying these principles to actual problems, considerable room remains for interpretation (Benz 2009: 27).

  23. 23.

    The spatial governance of the energy transition in Germany’s federal system provides another example of trade-offs between centralised and decentralised forms of governance (cf. Klagge 2013).

References

  • Abbott M (2001) Is the security of electricity supply a public good? Electr J 14(7):31–33

    Article  Google Scholar 

  • Adams P, Bows A, Gilbert P, Hammond J, Howard D, Lee R et al (2013) Understanding greenhouse gas balances of bioenergy systems. Supergen Bioenergy Hub, Manchester

    Google Scholar 

  • Akerlof GA (1970) The market for “Lemons”: quality uncertainty and the market mechanism. Q J Econ 84(3):488–500

    Article  Google Scholar 

  • Ammermann K, Mengel A (2011) Energetischer Biomasseanbau im Kontext von Naturschutz, Biodiversität, Kulturlandschaftsentwicklung. Informationen zur Raumentwicklung 2011(5/6):323–337

    Google Scholar 

  • Arnold K, Baur F, Beckert S, Bemmann A, Brotsack R, Dotzauer M et al (2015) Stellungnahme zum Grünbuch “Ein Strommarkt für die Energiewende” des Bundesministeriums für Wirtschaft und Energie. Perspektiven der Biomasseverstromung aus Sicht des Förderprogramms “Energetische Biomassenutzung”. Deutsches Biomasseforschungszentrum (DBFZ), Leipzig

    Google Scholar 

  • Arrow KJ (2008) The economic implications of learning by doing. In: Link AN (ed) The economic theory of invention and innovation. Elgar, Cheltenham, pp 157–175

    Google Scholar 

  • Arthur BW (1989) Competing technologies, increasing returns, and lock-in by historical events. Econ J 99(394):116–131

    Article  Google Scholar 

  • Arthur BW (1994) Increasing returns and path dependence in the economy. University of Michigan Press, Ann Arbor

    Book  Google Scholar 

  • Ashworth K, Wild O, Hewitt CN (2013) Impacts of biofuel cultivation on mortality and crop yields. Nat Clim Chang 3(5):492–496

    Article  Google Scholar 

  • Azar C (2000) Economics and distribution in the greenhouse. Clim Chang 47(3):233–238

    Article  Google Scholar 

  • Bartkowski B, Lienhoop N, Hansjürgens B (2015) Capturing the complexity of biodiversity: a critical review of economic valuation studies of biological diversity. Ecol Econ 113:1–14

    Article  Google Scholar 

  • Bator FM (1958) The anatomy of market failure. Q J Econ 72:351–379

    Article  Google Scholar 

  • Bauen A, Berndes G, Junginger M, Londo M, Vuille F, Ball R et al (2009) Bioenergy—a sustainable and reliable energy source. A review of status and prospects. IEA Bioenergy, Rotorua

    Google Scholar 

  • Baumol WJ, Oates WE (1971) The use of standards and prices for protection of the environment. Swed J Econ 73(1):42–54

    Article  Google Scholar 

  • Baumol WJ, Oates WE (1988) The theory of environmental policy, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Beall E, Rossi A (eds) (2011) Good socio-economic practices in modern bioenergy production. Minimizing risks and increasing opportunities for food security. Bioenergy and Food Security Criteria and Indicators Project, Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Becker GS (1983) A theory of competition among pressure groups for political influence. Q J Econ 98(3):371–400

    Article  Google Scholar 

  • Bento N (2010) Is carbon lock-in blocking investments in the hydrogen economy? A survey of actors’ strategies. Energy Policy 38(11):7189–7199

    Article  Google Scholar 

  • Benz A (2009) Politik in Mehrebenensystemen. VS Verlag für Sozialwissenschaften, Wiesbaden

    Book  Google Scholar 

  • Berg H, Cassel D (1992) Theorie der Wirtschaftspolitik. In: Bender D, Berg H, Cassel D, Gabisch G, Grossekettler H, Hartwig K-H et al (eds) Vahlens Kompendium der Wirtschaftstheorie und Wirtschaftspolitik. Band 2, 5th edn. Verlag Vahlen, Munich, pp 163–238

    Google Scholar 

  • Berndes G, Hansson J (2007) Bioenergy expansion in the EU: cost-effective climate change mitigation, employment creation and reduced dependency on imported fuels. Energy Policy 35(12):5965–5979

    Article  Google Scholar 

  • BMELV, BMBF, BMU, BMWi (eds) (2012) Biorefineries Roadmap as part of the German Federal Government action plans for the material and energetic utilisation of renewable raw materials. Federal Ministry of Education and Research (BMBF), Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Federal Ministry for Economic Affairs and Energy (BMWi), Federal Ministry of Food, Agriculture and Consumer Protection (BMELV), Berlin

    Google Scholar 

  • BMU, BMELV (2009a) National biomass action plan for Germany. Biomass and sustainable energy supply. Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Federal Ministry of Food, Agriculture and Consumer Protection (BMELV), Berlin

    Google Scholar 

  • BMU, BMELV (2009b) Nationaler Biomasseaktionsplan für Deutschland. Beitrag der Biomasse für eine nachhaltige Energieversorgung. Anhang. Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Federal Ministry of Food, Agriculture and Consumer Protection (BMELV), Berlin

    Google Scholar 

  • BMWi (2014) Ein Strommarkt für die Energiewende. Diskussionspapier des Bundesministeriums für Wirtschaft und Energie (Grünbuch). Federal Ministry for Economic Affairs and Energy (BMWi), Berlin

    Google Scholar 

  • BMWi, BMU (2010) Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung. Federal Ministry of Economics and Technology (BMWi), Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Berlin

    Google Scholar 

  • Bofinger S, Braun M, Costa Gomez C, Daniel-Gromke J, Gerhardt N, Hartmann K et al (2010) Die Rolle des Stromes aus Biogas in zukünftigen Energieversorgungsstrukturen. Fraunhofer-Institut für Windenergie und Energiesystemtechnik (IWES), Deutsches Biomasseforschungszentrum (DBFZ), Fachverband Biogas e.V., Hanau, Leipzig, Freising

    Google Scholar 

  • Brand F (2009) Critical natural capital revisited: ecological resilience and sustainable development. Ecol Econ 68(3):605–612

    Article  Google Scholar 

  • Breitschopf B, Klobasa M, Sensfuß F, Steinbach J, Ragwitz M, Lehr U et al (2011) Einzel- und gesamtwirtschaftliche Analyse von Kosten- und Nutzenwirkungen des Ausbaus Erneuerbarer Energien im deutschen Strom- und Wärmemarkt Update der quantifizierten Kosten- und Nutzenwirkungen für 2010. Fraunhofer-Institut für System- und Innovationsforschung (ISI), Gesellschaft für Wirtschaftliche Strukturforschung mbH (GWS), Institut für ZukunftsEnergieSysteme (IZES), Deutsches Institut für Wirtschaftsforschung (DIW), Karlsruhe, Osnabrück, Saarbrücken, Berlin

    Google Scholar 

  • Broch A, Hoekman SK, Unnasch S (2013) A review of variability in indirect land use change assessment and modeling in biofuel policy. Environ Sci Pol 29:147–157

    Article  Google Scholar 

  • Bundeskartellamt (2011) Sektoruntersuchung Kraftstoffe. Bundeskartellamt, Bonn

    Google Scholar 

  • Bundeskartellamt, Bundesnetzagentur (2013) Monitoringreport 2012. Bundesnetzagentur, Bundeskartellamt, Bonn

    Google Scholar 

  • Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policies. Energy Policy 39(7):4222–4234

    Article  Google Scholar 

  • Cherubini F (2010a) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51(7):1412–1421

    Article  Google Scholar 

  • Cherubini F (2010b) GHG balances of bioenergy systems—overview of key steps in the production chain and methodological concerns. Renew Energy 35(7):1565–1573

    Article  Google Scholar 

  • Cherubini F, Strømman AH (2011) Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour Technol 102(2):437–451

    Article  Google Scholar 

  • Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H et al (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S et al (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, pp 209–332

    Chapter  Google Scholar 

  • Coase RH (1937) The nature of the firm. Economica 4(16):386–405

    Article  Google Scholar 

  • COM (2005) Biomass action plan. COM(2005) 628 final. European Commission, Brussels

    Google Scholar 

  • COM (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off J Eur Union L 140(5.6.2009):16–62

    Google Scholar 

  • COM (2012) Innovating for sustainable growth. A bioeconomy for Europe. European Commission, Directorate-General for Research and Innovation, Brussels

    Google Scholar 

  • Common M, Stagl S (2005) Ecological economics—an introduction. Cambridge University Press, New York

    Book  Google Scholar 

  • Conzelmann T (2008) An new mode of governing? Multi-level governance between cooperation and conflict. In: Conzelmann T, Smith R (eds) Multi-level governance in the European Union: taking stock and looking ahead. Nomos, Baden-Baden, pp 11–30

    Chapter  Google Scholar 

  • Costanza R, Cornwell L (1992) The 4P approach to dealing with scientific uncertainty. Environment 34(9):12–20

    Article  Google Scholar 

  • Costanza R, Daly HE (1992) Natural capital and sustainable development. Conserv Biol 6(1):37–46

    Article  Google Scholar 

  • Costanza R, Patten BC (1995) Defining and predicting sustainability. Ecol Econ 15(3):193–196

    Article  Google Scholar 

  • Costanza R, Cumberland J, Daly H, Goodland R, Norgaard R (2001) Einführung in die Ökologische Ökonomik. Lucius & Lucius, Stuttgart

    Google Scholar 

  • Cramton P, Ockenfels A (2012) Economics and design of capacity markets for the power sector. Zeitschrift für Energiewirtschaft 36(2):113–134

    Article  Google Scholar 

  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8(2):389–395

    Article  Google Scholar 

  • Dahlman CJ (1979) The problem of externality. J Law Econ 22(1):141–162

    Article  Google Scholar 

  • Dallinger D, Doll C, Gnann T, Held M, Kley F, Lerch C et al (2011) Gesellschaftspolitische Fragestellungen der Elektromobilität. Fraunhofer-Institut für System- und Innovationsforschung (ISI), Karlsruhe

    Google Scholar 

  • Daly HE (1992) Allocation, distribution, and scale: towards an economics that is efficient, just, and sustainable. Ecol Econ 6(3):185–193

    Article  Google Scholar 

  • De Groot R, Van der Perk J, Chiesura A, van Vliet A (2003) Importance and threat as determining factors for criticality of natural capital. Ecol Econ 44(2–3):187–204

    Article  Google Scholar 

  • de Wit M, Junginger M, Lensink S, Londo M, Faaij A (2010) Competition between biofuels: modeling technological learning and cost reductions over time. Biomass Bioenergy 34(2):203–217

    Article  Google Scholar 

  • de Wit M, Junginger M, Faaij A (2013) Learning in dedicated wood production systems: past trends, future outlook and implications for bioenergy. Renew Sust Energy Rev 19:417–432

    Article  Google Scholar 

  • Demsetz H (1969) Information and efficiency: another viewpoint. J Law Econ 12(1):1–22

    Article  Google Scholar 

  • DG CLIMA (2014) The EU Emissions Trading System (EU ETS). Directorate-General for Climate Action, Brussels. http://ec.europa.eu/clima/policies/ets/index_en.htm. Accessed 08 Aug 2014

    Google Scholar 

  • DG Energy (2010) The impact of land use change on greenhouse gas emissions from biofuels and bioliquids: literature review. Directorate-General for Energy, Brussels

    Google Scholar 

  • Di Lucia L (2010) External governance and the EU policy for sustainable biofuels, the case of Mozambique. Energy Policy 38(11):7395–7403

    Article  Google Scholar 

  • Di Lucia L, Ahlgren S, Ericsson K (2012) The dilemma of indirect land-use changes in EU biofuel policy—an empirical study of policy-making in the context of scientific uncertainty. Environ Sci Pol 16:9–19

    Article  Google Scholar 

  • Dixit AK (1996) The making of economic policy: a transaction-cost politics perspective. MIT Press, Cambridge, MA

    Google Scholar 

  • Dovers SR, Norton TW, Handmer JW (2001) Ignorance, uncertainty and ecology: key themes. In: Handmer JW, Norton TW, Dovers SR (eds) Ecology, uncertainty and policy. Managing ecosystems for sustainability. Pearson Education, Harlow, pp 1–25

    Google Scholar 

  • Edwards R, Mulligan D, Marelli L (2010) Indirect land use change from increased biofuels demand: comparison of models and results for marginal biofuels production from different feedstocks. JRC Scientific and Technical Reports. European Union, Luxembourg

    Google Scholar 

  • Eggertsson T (1991) Economic behavior and institutions. Reprinted. Cambridge University Press, Cambridge

    Google Scholar 

  • Eggertsson T (1997) The old theory of economic policy and the new institutionalism. World Dev 25(8):1187–1203

    Article  Google Scholar 

  • Ekins P (2003) Identifying critical natural capital: conclusions about critical natural capital. Ecol Econ 44(2–3):277–292

    Article  Google Scholar 

  • Ekins P, Simon S, Deutsch L, Folke C, De Groot R (2003) A framework for the practical application of the concepts of critical natural capital and strong sustainability. Ecol Econ 44(2–3):165–185

    Article  Google Scholar 

  • Endres A (2013) Umweltökonomie, 4th edn. W. Kohlhammer, Stuttgart

    Google Scholar 

  • Endres A, Finus M (1996) Umweltpolitische Zielbestimmung im Spannungsfeld gesellschaftlicher Interessensgruppen. Ökonomische Theorie und Empirie. In: Siebert H (ed) Elemente einer rationalen Umweltpolitik. Expertisen zur umweltpolitischen Neuordnung. J. C. B. Mohr (Paul Siebeck), Tübingen, pp 35–133

    Google Scholar 

  • Endres A, Radke V (2012) Economics for environmental studies. A strategic guide to micro- and macroeconomics. Springer, Berlin

    Google Scholar 

  • Enserink B, Kwakkel JH, Veenman S (2013) Coping with uncertainty in climate policy making: (mis)understanding scenario studies. Futures 53:1–12

    Article  Google Scholar 

  • Erdmann G (2010) Energieökonomik: Theorie und Anwendungen, 2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  • Ericson S-O (2009) Synergies and competition in bioenergy systems: summary and conclusions. In: IEA Bioenergy (ed) Synergies and competition in bioenergy systems. IEA Bioenergy, Dublin, pp 1–8

    Google Scholar 

  • Erlei M, Leschke M, Sauerland D (1999) Neue Institutionenökonomik. Schäffer-Poeschel Verlag, Stuttgart

    Google Scholar 

  • FAO (2008) The state of food and agriculture. Biofuels: prospects, risks and opportunites. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238

    Article  Google Scholar 

  • Federal Government of Germany (2013) Deutschlands Zukunft gestalten. Koalitionsvertrag zwischen CDU, CSU und SPD, 18. Legislaturperiode. Federal Government of Germany, Berlin

    Google Scholar 

  • Finon D, Perez Y (2007) The social efficiency of instruments of promotion of renewable energies: a transaction-cost perspective. Ecol Econ 62(1):77–92

    Article  Google Scholar 

  • Fletcher RJ, Robertson BA, Evans JM, Doran P, Alavalapati JRR, Schemske D (2011) Biodiversity conservation in the era of biofuels: risks and opportunities. Front Ecol Environ 9(3):161–168

    Article  Google Scholar 

  • FNR (2012) Bioenergy in Germany: facts and figures. January 2012. Solid fuels, biofuels, biogas. Fachagentur Nachwachsende Rohstoffe e.V. (FNR), Gülzow

    Google Scholar 

  • Foxon TJ, Pearson PJG (2007) Towards improved policy processes for promoting innovation in renewable electricity technologies in the UK. Energy Policy 35(3):1539–1550

    Article  Google Scholar 

  • Frank S, Böttcher H, Havlík P, Valin H, Mosnier A, Obersteiner M et al (2013) How effective are the sustainability criteria accompanying the European Union 2020 biofuel targets? GCB Bioenergy 5(3):306–314

    Article  Google Scholar 

  • French S (2003) Modelling, making inferences and making decisions: the roles of sensitivity analysis. TOP 11(2):229–251

    Article  Google Scholar 

  • Fritsch M (2011) Marktversagen und Wirtschaftspolitik. Mikroökonomische Grundlagen staatlichen Handelns, 8th edn. Verlag Franz Vahlen, Munich

    Google Scholar 

  • Frondel M, Peters J (2007) Biodiesel: a new Oildorado? Energy Policy 35(3):1675–1684

    Article  Google Scholar 

  • Fujiwara N, Núñez Ferrer J, Egenhofer C (2006) The political economy of environmental taxation in European countries. CEPS Working Document No. 245. Centre for European Policy Studies (CEPS), Brussels

    Google Scholar 

  • Funtowicz SO, Ravetz JR (1990) Uncertainty and quality in science for policy. Kluwer, Amsterdam

    Book  Google Scholar 

  • Gabrielle B, Bamière L, Caldes N, De Cara S, Decocq G, Ferchaud F et al (2014) Paving the way for sustainable bioenergy in Europe: technological options and research avenues for large-scale biomass feedstock supply. Renew Sust Energy Rev 33:11–25

    Article  Google Scholar 

  • Gallagher E (2008) The Gallagher Review of the indirect effects of biofuels production. The Renewable Fuels Agency, St Leonards-on-Sea

    Google Scholar 

  • Gawel E (1995) Zur Politischen Ökonomie von Umweltabgaben. Walter Eucken Institut Vorträge und Aufsätze 146. Mohr, Tübingen

    Google Scholar 

  • Gawel E (1999) Umweltordnungsrecht—ökonomisch irrational? Die ökonomische Sicht. In: Gawel E, Lübbe-Wolff G (eds) Rationale Umweltpolitik—Rationales Umweltrecht: Konzepte, Kriterien und Grenzen rationaler Steuerung im Umweltschutz, 1st edn. Nomos, Baden-Baden, pp 237–322

    Google Scholar 

  • Gawel E (2009) Grundzüge der mikroökonomischen Theorie, 1st edn. Eul, Lohmar

    Google Scholar 

  • Gawel E (2011) Stoffstromanalyse und Stoffstromsteuerung im Bereich der Bioenergie. In: Beckenbach F, Urban AI (eds) Methoden der Stoffstromanalyse. Konzepte, agentenbasierte Modellierung und Ökobilanz. Interdisziplinäre Stoffstromforschung, Bd. 1. Metropolis, Marburg, pp 255–283

    Google Scholar 

  • Gawel E, Lehmann P (2011) Macht der Emissionshandel die Förderung erneuerbarer Energien überflüssig? Energiewirtschaftliche Tagesfragen 61(3):24–28

    Google Scholar 

  • Gawel E, Lübbe-Wolff G (1999) Rationale Umweltpolitik—Rationales Umweltrecht. Ein Editorial. In: Gawel E, Lübbe-Wolff G (eds) Rationale Umweltpolitik—Rationales Umweltrecht: Konzepte, Kriterien und Grenzen rationaler Steuerung im Umweltschutz, 1st edn. Nomos, Baden-Baden, pp 3–12

    Google Scholar 

  • Gawel E, Ludwig G (2011) The iLUC dilemma: how to deal with indirect land use changes when governing energy crops? Land Use Policy 28(4):846–856

    Article  Google Scholar 

  • Gawel E, Purkus A (2012) Ökonomische Aspekte der Bioenergiepolitik. Zeitschrift für Umweltpolitik & Umweltrecht (ZfU) 2012(1):29–59

    Google Scholar 

  • Gawel E, Purkus A (2015) The role of energy and electricity taxation in the context of the German energy transition. Zeitschrift für Energiewirtschaft 39(2):77–103

    Article  Google Scholar 

  • Gawel E, Strunz S, Lehmann P (2014) A public choice view on the climate and energy policy mix in the EU—how do emissions trading scheme and support for renewable energies interact? Energy Policy 64:175–182

    Article  Google Scholar 

  • GBEP (2007) A review of the current state of bioenergy development in G8 + 5 countries. Food and Agriculture Organization of the United Nations (FAO), Global Bioenergy Partnership (GBEP), Rome

    Google Scholar 

  • GBEP (2011) The global bioenergy partnership sustainability indicators for bioenergy, 1st edn. Food and Agriculture Organization of the United Nations (FAO), Global Bioenergy Partnership (GBEP), Rome

    Google Scholar 

  • Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C, Ramankutty N et al (2008) Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environ Res Lett 3(3):034001. doi:10.1088/1748-9326/3/3/034001

    Article  Google Scholar 

  • Gibbs P, Hanlon M, Hardaker P, Hawkins E, MacDonald A, Maskell K et al (2012) Making sense of uncertainty. Why uncertainty is part of science. Sense about Science (SAS), London

    Google Scholar 

  • Gillingham K, Sweeney J (2010) Market failure and the structure of externalities. In: Padilla J, Schmalensee R, Moselle B (eds) Harnessing renewable energy in electric power systems. Theory, practice, policy. Resources for the Future Press, Washington, DC, pp 69–92

    Google Scholar 

  • Goodwin P, Wright G (2001) Enhancing strategy evaluation in scenario planning: a role for decision analysis. J Manag Stud 38(1):1–16

    Article  Google Scholar 

  • Haberl H, Sprinz D, Bonazountas M, Cocco P, Desaubies Y, Henze M et al (2012) Correcting a fundamental error in greenhouse gas accounting related to bioenergy. Energy Policy 45:18–23

    Article  Google Scholar 

  • Häder M (1997) Umweltpolitische Instrumente und neue Institutionenökonomik. Gabler Verlag, Deutscher Universitäts-Verlag, Wiesbaden

    Book  Google Scholar 

  • Hartwick JM (1977) Intergenerational equity and the investing of rents from exhaustible resources. Am Econ Rev 67(5):972–974

    Google Scholar 

  • Hattam C, Böhnke-Henrichs A, Börger T, Burdon D, Hadjimichael M, Delaney A et al (2015) Integrating methods for ecosystem service assessment and valuation: mixed methods or mixed messages? Ecol Econ 120:126–138

    Article  Google Scholar 

  • Hayek FA (1945) The use of knowledge in society. Am Econ Rev 35(4): 519–530

    Google Scholar 

  • Hayek FA (1945/2005) The road to serfdom. The condensed version as it appeared in the April 1945 edition of Reader’s Digest. The Institute of Economic Affairs, London

    Google Scholar 

  • Head JG (1962) Public goods and public policy. Public Financ 17(3):197–219

    Google Scholar 

  • Heal GM (1998) Interpreting sustainability. In: Chichilnisky G, Heal GM, Vercelli A (eds) Sustainability: dynamics and uncertainty. Kluwer Academic Publishers, Dordrecht, pp 3–22

    Chapter  Google Scholar 

  • Heinelt H (2008) How to achieve governability in multi-level policymaking: lessons from the EU structural funds and EU environmental policy. In: Conzelmann T, Smith R (eds) Multi-level governance in the European Union: taking stock and looking ahead. Nomos, Baden-Baden, pp 53–72

    Chapter  Google Scholar 

  • Helm D (2008) Climate-change policy: why has so little been achieved? Oxf Rev Econ Policy 24(2):211–238

    Article  Google Scholar 

  • Helm D (2010) Government failure, rent-seeking, and capture: the design of climate change policy. Oxf Rev Econ Policy 26(2):182–196

    Article  Google Scholar 

  • Henke JM, Klepper G (2006) Biokraftstoffe: Königsweg für Klimaschutz, profitable Landwirtschaft und sichere Energieversorgung? Kieler Diskussionsbeiträge 427. Institut für Weltwirtschaft Kiel (IfW), Kiel

    Google Scholar 

  • Henle K, Alard D, Clitherow J, Cobb P, Firbank L, Kull T et al (2008) Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe—a review. Agric Ecosyst Environ 124(1–2):60–71

    Article  Google Scholar 

  • Hennig C, Gawor M (2012) Bioenergy production and use: comparative analysis of the economic and environmental effects. Energy Convers Manag 63:130–137

    Article  Google Scholar 

  • Henrichsmeyer W, Witzke HP (1991) Agrarpolitik Band 1: Agrarökonomische Grundlagen. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Henrichsmeyer W, Witzke HP (1994) Agrarpolitik Band 2: Bewertung und Willensbildung. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Hermeling C, Wölfing N (2011) Energiepolitische Aspekte der Bioenergienutzung: Nutzungskonkurrenz, Klimaschutz, politische Förderung. Zentrum für Europäische Wirtschaftsforschung (ZEW), Mannheim

    Google Scholar 

  • Hirschfeld J, Weiß J, Preidl M, Korbun T (2008) Klimawirkungen der Landwirtschaft in Deutschland. Diskussionspapier des IÖW 66/06. Institut für ökologische Wirtschaftsforschung (IÖW), Berlin

    Google Scholar 

  • Howarth RB (1997) Defining sustainability: an overview. Land Econ 73(4):445–447

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Isermeyer F, Zimmer Y (2006) Thesen zur Bioenergie-Politik in Deutschland. Arbeitsberichte des Bereichs Agrarökonomie 02/2006. Bundesforschungsanstalt für Landwirtschaft (FAL), Institut für Betriebswirtschaft, Braunschweig

    Google Scholar 

  • Jaffe AB, Newell RG, Stavins RN (2005) A tale of two market failures: technology and environmental policy. Ecol Econ 54(2–3):164–174

    Article  Google Scholar 

  • Jakubowski P, Tegner H, Kotte S (1997) Strategien umweltpolitischer Zielfindung: Eine ökonomische Perspektive. LIT, Münster

    Google Scholar 

  • Jamasb T (2007) Technical change theory and learning curves: patterns of progress in electricity generation technologies. Energy J 28(3):51–71

    Article  Google Scholar 

  • Jansen JC, Bakker SJA (2006) Social cost-benefit analysis of climate change mitigation options in a European context. Energy Research Centre of the Netherlands (ECN), Petten

    Google Scholar 

  • Jenkins G, Murphy J, Sexton D, Lowe J, Jones P, Kilsby C (2009) UK climate projections: briefing report. Met Office Hadley Centre, Exeter

    Google Scholar 

  • JRC-IET (2011) 2011 Technology map of the European Strategic Energy Technology Plan (SET-Plan). Technology descriptions. JRC Scientific and Technical Reports. Publications Office of the European Union, European Commission Joint Research Centre Institute for Energy and Transport (JRC-IET), Luxembourg

    Google Scholar 

  • Junginger M, de Visser E, Hjort-Gregersen K, Koornneef J, Raven R, Faaij A et al (2006) Technological learning in bioenergy systems. Energy Policy 34(18):4024–4041

    Article  Google Scholar 

  • Junginger M, van Dam J, Zarrilli S, Ali Mohamed F, Marchal D, Faaij A (2011) Opportunities and barriers for international bioenergy trade. Energy Policy 39(4):2028–2042

    Article  Google Scholar 

  • Kampman B, Fritsche U, Molenaar JW, Slingerland S, Bergsma G, Henneberg K et al (2010) BUBE: Better Use of Biomass for Energy. Background report to the position paper of IEA RETD and IEA Bioenergy. CE Delft, Öko-Institut, Delft, Darmstadt

    Google Scholar 

  • Kay A, Ackrill R (2012) Governing the transition to a biofuels economy in the US and EU: accommodating value conflicts, implementing uncertainty. Policy Soc 31(4):295–306

    Article  Google Scholar 

  • Keeney R, Hertel TW (2009) The indirect land use impacts of United States biofuel policies: the importance of acreage, yield, and bilateral trade responses. Am J Agric Econ 91(4):895–909

    Article  Google Scholar 

  • Klagge B (2013) Governance-Prozesse für erneuerbare Energien—Akteure, Koordinations- und Steuerungsstrukturen. In: Klagge B, Arbach C (eds) Governance-Prozesse für erneuerbare Energien. Akademie für Raumforschung und Landesplanung, Hanover, pp 7–16

    Google Scholar 

  • Knight F (1921) Risk, uncertainty, and profit. Houghton Mifflin, Boston

    Google Scholar 

  • Knill C, Tosun J (2008) Emerging patterns of multi-level governance in EU environmental policy. In: Conzelmann T, Smith R (eds) Multi-level governance in the European Union: taking stock and looking ahead. Nomos, Baden-Baden, pp 145–162

    Google Scholar 

  • Köder L, Burger A, Eckermann F (2014) Umweltschädliche Subventionen in Deutschland 2014. Aktualisierte Ausgabe 2014. Umweltbundesamt, Dessau

    Google Scholar 

  • König A (2011) Cost efficient utilisation of biomass in the German energy system in the context of energy and environmental policies. Energy Policy 39(2):628–636

    Article  Google Scholar 

  • Kopmann A, Kretschmer B, Lange M (2009) Effiziente Nutzung von Biomasse durch einen globalen Kohlenstoffpreis. Empfehlungen für eine koordinierte Bioenergiepolitik. Kiel Policy Brief Nr. 14. Institut für Weltwirtschaft Kiel (IfW), Kiel

    Google Scholar 

  • Krampe L, Peter F (2014) Letztverbrauch 2019. Planungsprämissen für die Berechnung der EEG-Umlage. Dokumentation—Endbericht für die Übertragungsnetzbetreiber. Prognos, Berlin

    Google Scholar 

  • Krewitt W, Schlomann B (2006) Externe Kosten der Stromerzeugung aus erneuerbaren Energien im Vergleich zur Stromerzeugung aus fossilen Energieträgern. Deutsches Zentrum für Luft- und Raumfahrt (DLR), Innovationsforschung (ISI), Stuttgart, Karlsruhe

    Google Scholar 

  • Krutilla K, Krause R (2011) Transaction costs and environmental policy: an assessment framework and literature review. Int Rev Environ Resour Econ 4(3–4):261–354

    Article  Google Scholar 

  • Krysiak FC (2009) Sustainability and its relation to efficiency under uncertainty. Economic Theory 41(2):297–315

    Article  Google Scholar 

  • Laborde D (2011) Assessing the land use change consequences of European biofuel policies. Final report for the Directorate General for Trade of the European Commission. International Food Policy Institute (IFPRI), Washington, DC

    Google Scholar 

  • Langniß O, Diekmann J, Lehr U, Heer K, Klink J, Kratzat M (2007) Die Förderung Erneuerbarer Energien als Regulierungsaufgabe. Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW), Deutsches Institut für Wirtschaftsforschung (DIW), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Stuttgart, Berlin

    Google Scholar 

  • Lehmann P, Gawel E (2013) Why should support schemes for renewable electricity complement the EU emissions trading scheme? Energy Policy 52:597–607

    Article  Google Scholar 

  • Leprich U, Hauser E, Grashof K, Grote L, Luxenburger M, Sabatier M et al (2012) Kompassstudie Marktdesign. Leitideen für ein Design eines Stromsystems mit hohem Anteil fluktuierender Erneuerbarer Energien. Ein Projekt der BEE-Plattform Systemtransformation. Ponte Press, Bochum

    Google Scholar 

  • Linhart E, Dhungel A-K (2013) Das Thema Vermaisung im öffentlichen Diskurs. Berichte über Landwirtschaft 91(2):1–24

    Google Scholar 

  • Liu TT, McConkey BG, Ma ZY, Liu ZG, Li X, Cheng LL (2011) Strengths, weaknesses, opportunities and threats analysis of bioenergy production on marginal land. Energy Procedia 5:2378–2386

    Article  Google Scholar 

  • Londo M, Deurwaarder E (2007) Developments in EU biofuels policy related to sustainability issues: overview and outlook. Biofuels Bioprod Biorefin 1(4):292–302

    Article  Google Scholar 

  • Luckenbach H (2000) Theoretische Grundlagen der Wirtschaftspolitik, 2nd edn. Vahlen, Munich

    Google Scholar 

  • Majer S, Stecher K, Adler P, Thrän D, Müller-Langer F (2013) Biomassepotenziale und Nutzungskonkurrenzen. Kurzstudie im Rahmen der Wissenschaftlichen Begleitung, Unterstützung und Beratung des BMVBS in den Bereichen Verkehr und Mobilität mit besonderem Fokus auf Kraftstoffen und Antriebstechnologien sowie Energie und Klima. Deutsches Biomasseforschungszentrum (DBFZ), Leipzig

    Google Scholar 

  • Mäler K-G (2000) Development, ecological resources and their management: a study of complex dynamic systems. Eur Econ Rev 44(4–6):645–665

    Article  Google Scholar 

  • Mansfield E (1994) Microeconomics. Theory/Applications, 8th edn. Norton, New York

    Google Scholar 

  • McCormick RE, Tollison RD (1981) Politicians, legislation and the economy: an inquiry into the interest-group theory of government. Martinus-Nijhoff, Boston

    Book  Google Scholar 

  • McKone TE, Nazaroff WW, Berck P, Auffhammer M, Lipman T, Torn MS et al (2011) Grand challenges for life-cycle assessment of biofuels. Environ Sci Technol 45(5):1751–1756

    Article  Google Scholar 

  • Meijer ISM, Hekkert MP, Koppenjan JFM (2007) The influence of perceived uncertainty on entrepreneurial action in emerging renewable energy technology; biomass gasification projects in the Netherlands. Energy Policy 35(11):5836–5854

    Article  Google Scholar 

  • Menanteau P, Finon D, Lamy ML (2003) Prices versus quantities: choosing policies for promoting the development of renewable energy. Energy Policy 31(8):799–812

    Article  Google Scholar 

  • Meyer R, Rösch C, Sauter A (2010) Chancen und Herausforderungen neuer Energiepflanzen. Endbericht zum TA-Projekt. Arbeitsbericht Nr. 136. Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag, Berlin

    Google Scholar 

  • Meyerhoff J, Ohl C, Hartje V (2010) Landscape externalities from onshore wind power. Energy Policy 38(1):82–92

    Article  Google Scholar 

  • Michaelis P (1996) Ökonomische Instrumente in der Umweltpolitik. Eine anwendungsorientierte Einführung. Physika-Verlag, Heidelberg

    Book  Google Scholar 

  • Neuhoff K, Küchler S, Rieseberg S, Wörlen C, Heldwein C, Karch A, Ismer R (2013) Vorschlag für die zukünftige Ausgestaltung der Ausnahmen für die Industrie bei der EEG-Umlage. DIW Berlin: Politikberatung kompakt 75. Deutsches Institut für Wirtschaftsforschung (DIW), Berlin

    Google Scholar 

  • Neumayer E (2003) Weak versus strong sustainability. Exploring the limits of two opposing paradigms, 2nd edn. Elgar, Cheltenham

    Google Scholar 

  • Newell RG (2010) The role of markets and policies in delivering innovation for climate change mitigation. Oxf Rev Econ Policy 26(2):253–269

    Article  Google Scholar 

  • Newell RG, Pizer WA (2003) Regulating stock externalities under uncertainty. J Environ Econ Manag 45(2):416–432

    Article  Google Scholar 

  • Nitsch J, Krewitt W, Nast M, Viebahn P, Gärtner S, Pehnt M et al (2004) Ökologisch optimierter Ausbau der Nutzung erneuerbarer Energien in Deutschland. Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Energie- und Umweltforschung (ifeu), Wuppertal Institut für Klima, Umwelt und Energie, Stuttgart, Heidelberg, Wuppertal

    Google Scholar 

  • Norgaard RB (1992) Sustainability as intergenerational equity: economic theory and environmental planning. Environ Impact Assess Rev 12(1–2):85–124

    Article  Google Scholar 

  • North DC (1990) Institutions, institutional change and economic performance. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • North DC (2005) Understanding the process of economic change. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Nuffield Council on Bioethics (2011) Biofuels: ethical issues. Nuffield Council on Bioethics, London

    Google Scholar 

  • Olson M (1965) The logic of collective action: public goods and the theory of groups. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Oppermann R, Brunk I, Helmecke A, Blew J, Kollmar P, Beil M et al (2009) Gemeinsame Agrarpolitik: Cross Compliance und Auswirkungen auf die Biodiversität. Ergebnisse eines Forschungsprojektes und Empfehlungen zur Weiterentwicklung der Agrarpolitik. Institut für Agrarökologie und Biodiversität (IFAB), Institut für Ökologie und Naturschutz (IFÖN), Michael-Otto-Institut im NABU, BioConsult SH, Lehrstuhl Prof. Dr. Poschlod Universität Regensburg, Mannheim

    Google Scholar 

  • Orchard L, Stretton H (1997) Critical survey: public choice. Camb J Econ 21:409–430

    Article  Google Scholar 

  • Owen AD (2006) Renewable energy: externality costs as market barriers. Energy Policy 34(5):632–642

    Article  Google Scholar 

  • Ozkaynak B, Devine P, Rigby D (2004) Operationalising strong sustainability: definitions, methodologies and outcomes. Environ Values 13(3):279–303

    Article  Google Scholar 

  • Pacini H, Assunção L, van Dam J, Toneto R Jr (2013) The price for biofuels sustainability. Energy Policy 59:898–903

    Article  Google Scholar 

  • Padilla E (2002) Intergenerational equity and sustainability. Ecol Econ 41(1):69–83

    Article  Google Scholar 

  • Pappenheim R (2001) Neue Institutionenökonomik und politische Institutionen. Europäischer Verlag der Wissenschaften, Frankfurt am Main

    Google Scholar 

  • Perman R, Ma Y, McGilvray J (eds) (2003) Natural resource and environmental economics. Pearson, Harlow

    Google Scholar 

  • Pizer WA (1999) The optimal choice of climate change policy in the presence of uncertainty. Resour Energy Econ 21(3–4):255–287

    Article  Google Scholar 

  • Pizer WA, Popp D (2008) Endogenizing technological change: matching empirical evidence to modeling needs. Energy Econ 30(6):2754–2770

    Article  Google Scholar 

  • Poocharoen O, Sovacool BK (2012) Exploring the challenges of energy and resources network governance. Energy Econ 42:409–418

    Google Scholar 

  • Popp A, Lotze-Campen H, Leimbach M, Knopf B, Beringer T, Bauer N et al (2011) On sustainability of bioenergy production: integrating co-emissions from agricultural intensification. Biomass Bioenergy 12(35):4770–4780

    Article  Google Scholar 

  • Porter ME (1985) Competitive advantage: creating and sustaining superior performance. Free Press, New York

    Google Scholar 

  • Purkus A, Gawel E, Thrän D (2012) Bioenergy governance between market and government failures: a new institutional economics perspective. UFZ-Discussion Papers 13/2012. Helmholtz-Centre for Environmental Research GmbH—UFZ, Leipzig

    Google Scholar 

  • Purkus A, Röder M, Gawel E, Thrän D, Thornley P (2015) Handling uncertainty in bioenergy policy design—a case study analysis of UK and German bioelectricity policy instruments. Biomass Bioenergy 79:64–79

    Article  Google Scholar 

  • Rader NA, Norgaard RB (1996) Efficiency and sustainability in restructured electricity markets: the renewables portfolio standard. Electr J 9(6):37–49

    Article  Google Scholar 

  • Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment—part 1: goal and scope and inventory analysis. Int J Life Cycle Assess 13(4):290–300

    Article  Google Scholar 

  • Richter R, Furubotn EG (2003) Neue Institutionenökonomik. Eine Einführung und kritische Würdigung, 3rd edn. Mohr Siebeck, Tübingen

    Google Scholar 

  • Rohrig K, Lehnert W, Rehfeldt K, Diekmann J, Hofmann L, Hochloff P et al (2011) Flexible Stromproduktion aus Biogas und Biomethan. Die Einführung einer Kapazitätskomponente als Förderinstrument. Bericht zum Projekt “Weiterentwicklung und wissenschaftliche Begleitung der Umsetzung des Integrations-Bonus nach § 64 Abs. 1.6 EEG” im Auftrag des Bundesministeriums für Umwelt Naturschutz und Reaktorsicherheit (BMU). Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES), Becker Büttner Held (BBH), Deutsche Windguard, Deutsches Institut für Wirtschaftsforschung (DIW Berlin), Leibniz Universität Hannover, Kassel, Bremerhaven, Berlin, Varel, Hanover

    Google Scholar 

  • Rossi A (ed) (2012) Good environmental practices in bioenergy feedstock production. Making bioenergy work for climate and food security. Bioenergy and Food Security Criteria and Indicators Project, Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Rowe R, Whitaker J, Freer-Smith PH, Chapman J, Ryder S, Ludley KE et al (2011) Counting the cost of carbon in bioenergy systems: sources of variation and hidden pitfalls when comparing life cycle assessments. Biofuels 2(6):693–707

    Article  Google Scholar 

  • RSB (2013) Roundtable on Sustainable Biomaterials (RSB). http://rsb.org/. Accessed 14 Sept 2013

  • RSPO (2013) Roundtable on Sustainable Palm Oil. http://www.rspo.org/. Accessed 14 Sept 2013

  • Scarlat N, Dallemand J-F (2011) Recent developments of biofuels/bioenergy sustainability certification: a global overview. Energy Econ 39(3):1630–1646

    Google Scholar 

  • Schubert R, Blasch J (2010) Sustainability standards for bioenergy: a means to reduce climate change risks? Energy Econ 38(6):2797–2805

    Google Scholar 

  • Searchinger T (2009) Evaluating biofuels—the consequences of using land to make fuel. Brussels Forum Paper Series. The German Marshall Fund of the United States, Washington, DC

    Google Scholar 

  • Sijm J, Lehmann P, Gawel E, Chewpreecha U, Pollit H, Strunz S (2014) EU climate and energy policy in 2030: how many targets and instruments are necessary? UFZ Discussion Papers 3/2014. Helmholtz Centre for Environmental Research—UFZ, Leipzig

    Google Scholar 

  • Simon HA (1955) A behavioral model of rational choice. Q J Econ 69(1):99–118

    Article  Google Scholar 

  • Smithson M (1989) Ignorance and uncertainty: emerging paradigms. Springer, New York

    Book  Google Scholar 

  • Söderholm P (2008) Harmonization of renewable electricity feed-in laws: a comment. Energy Econ 36:946–953

    Google Scholar 

  • Solow RM (1974) Intergenerational equity and exhaustible resources. Rev Econ Stud 41:29–45

    Article  Google Scholar 

  • Springmann J-P (2005) Die Förderung erneuerbarer Energien in der Stromerzeugung auf dem ordnungspolitischen Prüfstand. TUC Working Papers Nr. 03. Department of Economics, Technical University Clausthal, Clausthal

    Google Scholar 

  • SRU (2007) Climate change mitigation by biomass. Special report. German Advisory Council on the Environment (SRU), Berlin

    Google Scholar 

  • Stavins RN, Wagner AF, Wagner G (2003) Interpreting sustainability in economic terms: dynamic efficiency plus intergenerational equity. Econ Lett 79(3):339–343

    Article  Google Scholar 

  • Stehfest E, Ros J, Bouwman L (2010) Indirect effects of biofuels: intensification of agricultural production. Netherlands Environmental Assessment Agency (PBL), Bilthoven

    Google Scholar 

  • Sterner M, Fritsche U (2011) Greenhouse gas balances and mitigation costs of 70 modern Germany-focused and 4 traditional biomass pathways including land-use change effects. Biomass Bioenergy 35(12):4797–4814

    Article  Google Scholar 

  • Stewart TJ, French S, Rios J (2013) Integrating multicriteria decision analysis and scenario planning—review and extension. Omega 41(4):679–688

    Article  Google Scholar 

  • Stirling A, Mayer S (2004) Confronting risk with precaution: a multi-criteria mapping of genetically modified crops. In: Getzner M, Spash C, Stagl S (eds) Alternatives for valuing nature. Routledge, London, pp 159–184

    Google Scholar 

  • Streit ME (2005) Theorie der Wirtschaftspolitik, 6th edn. Lucius & Lucius, Stuttgart

    Google Scholar 

  • Streit ME, Wohlgemuth M (2000) Walter Eucken und Friedrich A. von Hayek: Initiatoren der Ordnungsökonomik. In: Külp B, Vanberg V (eds) Freiheit und Wettbewerbliche Ordnung. Haufe Verlag, Freiburg, pp 461–498

    Google Scholar 

  • Strunz S, Gawel E, Lehmann P (2014a) On the alleged need to strictly “Europeanize” the German Energiewende. Intereconomics 49(5):244–250

    Article  Google Scholar 

  • Strunz S, Gawel E, Lehmann P (2014b) Towards a general “Europeanization” of EU Member States’ energy policies? UFZ Discussion Paper 17/2014. Helmholtz Centre for Environmental Research—UFZ, Leipzig

    Google Scholar 

  • Tänzler D, Luhmann H-J, Supersberger N, Fischdick M, Maas A, Carius A (2007) Die sicherheitspolitische Bedeutung erneuerbarer Energien. Im Auftrag des Bundesministeriums für Umwelt. Naturschutz und Reaktorsicherheit. Endbericht. Adelphi Consult, Wuppertal Institut für Klima, Umwelt und Energie, Berlin, Wuppertal

    Google Scholar 

  • Thacher D, Rein M (2004) Managing value conflict in public policy. Governance 17(4):457–486

    Article  Google Scholar 

  • Thornley P, Gilbert P (2013) Biofuels: balancing risks and rewards. Interface Focus 3(1):1–9

    Google Scholar 

  • Thornley P, Gilbert P, Shackley S, Hammond J (2015) Maximizing the greenhouse gas reductions from biomass: the role of life cycle assessment. Biomass Bioenergy 81:35–43

    Article  Google Scholar 

  • Thrän D, Pfeiffer D (eds) (2015) Meilensteine 2030. Elemente und Meilensteine für die Entwicklung einer tragfähigen und nachhaltigen Bioenergiestrategie. Schriftenreihe des Förderprogramms “Energetische Biomassenutzung” Band 18. Deutsches Biomasseforschungszentrum (DBFZ), Leipzig

    Google Scholar 

  • Thrän D, Leible L, Simon S, Pütz S, Kälber S, Geiss C et al (2010a) Bioenergie und nachhaltige Landnutzung. Technikfolgenabschätzung—Theorie und Praxis 19(3):65–74

    Google Scholar 

  • Thrän D, Seidenberger T, Zeddies J, Offermann R (2010b) Global biomass potentials—resources, drivers and scenario results. Energy Sustain Dev 14(3):200–205

    Article  Google Scholar 

  • Thrän D, Edel M, Pfeifer J, Ponitka J, Rode M, Knispel S (2011a) DBFZ Report Nr 4: Identifizierung strategischer Hemmnisse und Entwicklung von Lösungsansätzen zur Reduzierung der Nutzungskonkurrenzen beim weiteren Ausbau der Biomassenutzung. Deutsches Biomasseforschungszentrum (DBFZ), Leipzig

    Google Scholar 

  • Thrän D, Scholwin F, Witt J, Krautz A, Bienert K, Hennig C et al (2011b) Vorbereitung und Begleitung der Erstellung des Erfahrungsberichtes 2011 gemäß § 65 EEG im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit. Vorhaben IIa Endbericht. Deutsches Biomasseforschungszentrum (DBFZ), Leipzig

    Google Scholar 

  • Tullock G (2008) Public choice. In: Durlauf SN (ed) The new Palgrave dictionary of economics, vol 6, 2nd edn. Palgrave Macmillan, Basingstoke, pp 722–727

    Chapter  Google Scholar 

  • UNDP (2004) World energy assessment. Overview: 2004 update. United Nations Development Programme (UNDP), New York

    Google Scholar 

  • Unruh GC (2000) Understanding carbon lock-in. Energy Econ 28(12):817–830

    Google Scholar 

  • Unruh GC (2002) Escaping carbon lock-in. Energy Econ 30(4):317–325

    Google Scholar 

  • Unteutsch M, Lindenberger D (2014) Promotion of electricity from renewable energy in Europe post 2020—the economic benefits of cooperation. Zeitschrift für Energiewirtschaft 38(1):47–64

    Article  Google Scholar 

  • Upham P, Riesch H, Tomei J, Thornley P (2011) The sustainability of forestry biomass supply for EU bioenergy: a post-normal approach to environmental risk and uncertainty. Environ Sci Pol 14(5):510–518

    Article  Google Scholar 

  • van Dam J, Junginger M, Faaij A (2010) From the global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning. Renew Sust Energ Rev 14(9):2445–2472

    Article  Google Scholar 

  • van den Wall Bake JD, Junginger M, Faaij A, Poot T, Walter A (2009) Explaining the experience curve: cost reductions of Brazilian ethanol from sugarcane. Biomass Bioenergy 33(4):644–658

    Article  Google Scholar 

  • van der Horst D (2005) UK biomass energy since 1990: the mismatch between project types and policy objectives. Energy Policy 33(5):705–716

    Article  Google Scholar 

  • van Stappen F, Brose I, Schenkel Y (2011) Direct and indirect land use changes issues in European sustainability initiatives: state-of-the-art, open issues and future developments. Biomass Bioenergy 35(12):4824–4834

    Article  Google Scholar 

  • Voigt S (2002) Institutionenökonomik. Wilhelm Fink Verlag, Munich

    Google Scholar 

  • Volkery A, Ribeiro T (2009) Scenario planning in public policy: understanding use, impacts and the role of institutional context factors. Technol Forecast Soc Chang 76(9):1198–1207

    Article  Google Scholar 

  • von Mises L (1929) Kritik des Interventionismus. Untersuchungen zur Wirtschaftspolitik und Wirtschaftsideologie der Gegenwart. Fischer, Jena

    Google Scholar 

  • WBA (2007) Nutzung von Biomasse zur Energiegewinnung—Empfehlungen an die Politik. Wissenschaftlicher Beirat Agrarpolitik beim Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (WBA), Berlin

    Google Scholar 

  • WBA (2011) Promotion of biogas production through the Renewable Energy Sources Act (EEG). Statement on the planned amendment of the Renewable Energy Sources Act. Scientific Advisory Board on Agricultural Policy at the Federal Ministry of Food, Agriculture and Consumer Protection (WBA), Berlin

    Google Scholar 

  • WBGU (2008) Future bioenergy and sustainable land use. German Advisory Council on Global Change (WBGU), Berlin

    Google Scholar 

  • Webb A, Coates D (2012) Biofuels and biodiversity. CBD technical series no. 65. Secretariat of the Convention on Biological Diversity, Montreal

    Google Scholar 

  • Welfens PJJ (2013) Grundlagen der Wirtschaftspolitik. Institutionen—Makroökonomik—Politikkonzepte, 5th edn. Springer Gabler, Berlin

    Google Scholar 

  • Wesseler J, Weikard H-P, Weaver RD (2003) Introduction: approaches to risk and uncertainty in environmental and resource economics. In: Wesseler J, Weikard H-P, Weaver RD (eds) Risk and uncertainty in environmental and natural resource economics. Edward Elgar, Cheltenham, pp 1–8

    Google Scholar 

  • Whitaker J, Ludley KE, Rowe R, Taylor G, Howard DC (2010) Sources of variability in greenhouse gas and energy balances for biofuel production: a systematic review. GCB Bioenergy 2(3):99–112

    Google Scholar 

  • Wieliczko B (2012) Future CAP—food security and safety are the key. Paper presented at New challenges for EU agricultural sector and rural areas. Which role for public policy? 126th EAAE Seminar. 27–29 June 2012, Capri

    Google Scholar 

  • Williamson OE (1996) The mechanisms of governance. Oxford University Press, New York

    Google Scholar 

  • Woodward RT, Bishop RC (1995) Efficiency, sustainability and global warming. Ecol Econ 14(2):101–111

    Article  Google Scholar 

  • World Commission on Environment and Development (1987) Our common future. Oxford University Press, New York

    Google Scholar 

  • Wynne B (1992) Uncertainty and environmental learning: reconceiving science and policy in the preventive paradigm. Glob Environ Chang 2(2):111–127

    Article  Google Scholar 

  • Young RA (2001) Uncertainty and the environment. Implications for decision making and environmental policy. Elgar, Cheltenham

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Purkus, A. (2016). Allocative Challenges of Bioenergy Use. In: Concepts and Instruments for a Rational Bioenergy Policy. Lecture Notes in Energy, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-31135-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31135-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31134-0

  • Online ISBN: 978-3-319-31135-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics