Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 384))

  • 399 Accesses

Abstract

In this chapter, the background of the cognitive radio technology is stated. The key technologies are then introduced simply. Finally, the classification and methods of the spectrum sensing technology are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Federal Communications commission (2002) Spectrum policy task force, ET Docket no. 02-135 memorandum opinion and order

    Google Scholar 

  2. Federal Communications commission (2003) Notice of proposed rule making and order, ET Docket No 03-222

    Google Scholar 

  3. Federal Communications commission (2003.) Notice of inquiry and notice of proposed Rulemaking, ET Docket No. 03-237

    Google Scholar 

  4. Cheng P, Deng RL, Chen JM (2012) Energy-efficient cooperative spectrum sensing in sensor-aided cognitive radio networks. IEEE Wirel Commun 19(6):100–105

    Article  Google Scholar 

  5. McHenry M, Livsics E, Nguyen T et al (2007) XG dynamic spectrum access field test results. IEEE Commun Mag 45(6):51–57

    Article  Google Scholar 

  6. McHenry MA NSF (2005) Spectrum occupancy measurements project summary. Shared Spectrum Company Rep

    Google Scholar 

  7. Deng RL, Chen JM, Yuen C et al (2012) Energy-efficient cooperative spectrum sensing by optimal scheduling in sensor-aided cognitive radio networks. IEEE Trans Veh Technol 61(2):716–725

    Article  Google Scholar 

  8. Buddhikot MM, Ryan K (2005) Spectrum management in coordinated dynamic spectrum access based cellular networks. In: Proceedings of IEEE DySPAN 2005, pp 299–307

    Google Scholar 

  9. Etkin R, Parekh A, Tse D (2005) Spectrum sharing for unlicensed bands. In: Proceedings of IEEE DySPAN 2005, pp 251–258

    Google Scholar 

  10. Grandblaise D, Bourse D, Moessner K, Leaves P (2002) Dynamic spectrum allocation (DSA) and reconfigurability. In: Proceedings of software-defined radio (SDR) Forum

    Google Scholar 

  11. Kamakaris T, Buddhikot MM, Iyer R (2005) A case for coordinated dynamic spectrum access in cellular networks. In: Proceedings of IEEE DySPAN 2005, pp 289–298

    Google Scholar 

  12. Leaves P, Moessner K, Tafazoli R, Grandblaise D, Bourse D, Tonjes R, Breveglieri M (2004) Dynamic spectrum allocation in composite reconfigurable wireless networks. IEEE Comm Mag 42:72–81

    Article  Google Scholar 

  13. Wang P, Akyildiz IF (2011) Can dynamic spectrum access induce heavy tailed delay? In: 2011 IEEE symposium on new frontiers in dynamic spectrum access networks (DySPAN), Aachen, pp 197–207

    Google Scholar 

  14. Wang P, Akyildiz IF (2012) On the origins of heavy-tailed delay in dynamic spectrum access networks. IEEE Trans Mobile Comput 11(2):204–217

    Google Scholar 

  15. Cabric D, Mishra SM, Brodersen RW (2004) Implementation issues in spectrum sensing for cognitive radios. In: Proceedings of 38th Asilomar conferences signals, system, computers. United States, pp 772–776

    Google Scholar 

  16. Cabric D, Brodersen RW (2005) Physical layer design issues unique to cognitive radio systems. In: Proceedings of IEEE personal indoor and mobile radio communications (PIMRC) 2005

    Google Scholar 

  17. Cabric D, Mishra SM, Willkomm D, Brodersen R, Wolisz A (2005) A cognitive radio approach for usage of virtual unlicensed spectrum. In: Proceedings of 14th IST mobile and wireless communications summit

    Google Scholar 

  18. Maldonado D, Lie B, Hugine A, Rondeau TW, Bostian CW (2005) Cognitive radio applications to dynamic spectrum allocation. In: Proceedings of IEEE DySPAN 2005, pp 597–600

    Google Scholar 

  19. Akyildiz IF, Lee WY, Vuran MC et al (2006) Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput Net J 50(13):2127–2159

    Article  MATH  Google Scholar 

  20. Shin KG, Hyoil K, Min AW et al (2010) Cognitive radios for dynamic spectrum access: from concept to reality. IEEE Wirel Commun 17(6):64–74

    Article  Google Scholar 

  21. Mitola J, Maguit QG (1999) Cognitive radio: making software radios more personal. IEEE Pers Commun 6(4):13–18

    Article  Google Scholar 

  22. Simeone O, Gambini J, Bar-Ness Y et al (2007) Cooperation and cognitive radio. In: IEEE international conference on proceedings communications, 2007. ICC‘07, Glasgow, pp 6511–6515

    Google Scholar 

  23. Scutari G, Palomar D, Barbarossa S (2008) Cognitive MIMO radio. IEEE Signal Process Mag 25(6):46–59

    Article  MATH  Google Scholar 

  24. Weiss T, Jondral F (2004) Spectrum pooling: an innovative strategy for the enhancement of spectrum efficiency. IEEE Commun Mag 42(3):S8–S14

    Google Scholar 

  25. Ganesan G, Li Y (2005) Agility improvement through cooperative diversity in cognitive radio. In: Proceedings of IEEE global telecommunications conference. GLOBECOM’05, St. Louis, MO, United States, pp 2505–2509

    Google Scholar 

  26. Tang JM (2011) Research on transmission performance of cognitive radio system based on cooperative communication. Beijing University of Posts and Telecommunications, Beijing

    Google Scholar 

  27. Yan SN (2011) Research on spectrum sharing technologies based on cooperation for cognitive radios. Beijing University of Posts and Telecommunications, Beijing

    Google Scholar 

  28. IEEE 802.22-2011(TM) Standard for cognitive wireless regional area networks (RAN) for operation in TV bands http://www.ieee802.org/22/. 1 July 2011

  29. IEEE 802.16’s license-exempt (LE) task group, [online]. Available: http://grouper.ieee802.0rg/16/e

    Google Scholar 

  30. IEEE P1900 working group [online]. Available: http://grouper.ieee.org/groups/emc/emc/1900/index.html

  31. Holland O, Muck M, Martigne P et al (2007) Development of a radio enabler for reconfiguration management within the IEEE P1900.4 working group. IEEE DySPAN 2007:232–239

    Google Scholar 

  32. Muck M, Buljore S, Martigne P et al (2007) IEEE P1900.B: coexistence support for reconfigurable, heterogeneous air interfaces. IEEE DySPAN 2007:381–389

    Google Scholar 

  33. Shen J (2004) 3GPP long term evolution: principle and system design. The People’s Posts and Telecommunications Press, Beijing

    Google Scholar 

  34. Si JB (2010) Wireless cooperative transmission and the application in cognitive radio networks. Xidian University, Xian

    Google Scholar 

  35. Guo CL, Feng CY, Zeng ZM (2010) Cognitive radio network technologies and application. Publishing House of Electronics Industry, Beijing

    Google Scholar 

  36. Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 23(2):201–220

    Article  Google Scholar 

  37. Zhang GW (2011) Spectrum sensing algorithms for cognitive radio networks. Shandong University, Jinan

    Google Scholar 

  38. Brodersen RW et al (2004) Coruvs: a cognitive radio approach for usage of virtual unlicensed spectrum. Berkeley Wireless Research Center (BWRC) White paper

    Google Scholar 

  39. FP6 End-to-End Reconfigurability (R2R II) Integrated Project (IP), http://www.ntia.doc.gov/osmhome/allochrt.pdf

  40. DAPRA XG WG (2003) The XG Architectural framework V1.0

    Google Scholar 

  41. DAPRA XG WG (2003) The XG Vision RFC V1.0

    Google Scholar 

  42. Thomas RW, DaSilva LA, MacKenzie AB (2005) Cognitive networks. In: Proceedings of IEEE DySPAN 2005, pp 352–360

    Google Scholar 

  43. Jondral FK (2005) Software-defined radio-basic and evolution to cognitive radio, EURASIP J Wirel Commun Networking 2005(3):275–283

    Google Scholar 

  44. Hossain E, Bhargava V (2007) Cognitive wireless communication networks. Springer, Berlin

    Google Scholar 

  45. Chen R, Park JM, Bian K (2008) Robust distributed spectrum sensing in cognitive radio networks. In: Proceedings of IEEE INFOCOM, Phoenix, pp 1876–1884

    Google Scholar 

  46. Wax M, Kailath T (1985) Detection of signals by Information theoretic criteria. IEEE Trans Acoust Speech Signal Process 33(2):387–392

    Article  MathSciNet  Google Scholar 

  47. Editorial Guest (2007) Adaptive, spectrum agile and cognitive wireless networks. IEEE J Sel Areas Commun 25(3):513–516

    Google Scholar 

  48. Varshney PK (1996) Distributed detection and data fusion, 1st edn. Article Book, Springer, Berlin pp 1–276

    Google Scholar 

  49. Lehtomaki JJ, Vartiainen J, Juntti M, Saarnisaari H (2006) Spectrum sensing with forward methods. In: Proceedings of IEEE MILCOM, Washington, DC, pp 1–7

    Google Scholar 

  50. Dior (2009) Spectrum sensing optimization based on detection and power constraints. Huazhong University of Science and Technology, Wuhan

    Google Scholar 

  51. Zhao Q, Sadler BM (2007) Dynamic spectrum access: signal processing, networking and regulatory policy. IEEE Signal Process Mag 55(5):2294–2309

    Article  Google Scholar 

  52. Benkler Y (1998) Overcoming agoraphobia: building the commons of the digitally networked environment. Harvard J Law Technol 11:(287)

    Google Scholar 

  53. Lehr W, Crowncroft J (2005) Managing shared access to a spectrum commons. In: Proceedings of IEEE DySPAN 2005, pp 420–444

    Google Scholar 

  54. Brik V, Rozner E, Banarjee S, Bahl P, DSAP (2005) A protocol for coordinated spectrum access. In: Proceedings of IEEE DySPAN 2005, pp 611–614

    Google Scholar 

  55. Cao L, Zheng H (2005) Distributed spectrum allocation via local bargaining. In: Proceedings of IEEE sensor and Ad Hoc communications and networks (SECON) 2005, pp 475–486

    Google Scholar 

  56. Ma L, Han X, Shen CC (2005) Dynamic open spectrum sharing MAC protocol for wireless ad hoc network. In: Proceedings of IEEE DySPAN 2005, pp 203–213

    Google Scholar 

  57. Sankaranarayanan S, Papadimitratos P, Mishra A, Hershey S (2005) A bandwidth sharing approach to improve licensed spectrum utilization. In: Proceedings of IEEE DySPAN 2005, pp 279–288

    Google Scholar 

  58. Zhao J, Zheng H, Yang GH (2005) Distributed coordination in dynamic spectrum allocation networks. In: Proceedings of IEEE DySPAN 2005, pp 259–268

    Google Scholar 

  59. Zhao Q, Tong L, Swami A (2005) Decentralized cognitive MAC for dynamic spectrum access. In: Proceedings of IEEE DySPAN 2005, pp 224–232

    Google Scholar 

  60. Zheng H, Cao L (2005) Device-centric spectrum management. In: Proceedings of IEEE DySPAN 2005, pp 56–65

    Google Scholar 

  61. Huang J, Berry RA, Honig ML (2005) Spectrum sharing with distributed interference compensation. In: Proceedings of IEEE DySPAN 2005, pp 88–93

    Google Scholar 

  62. Yucek T, Arslan H (2009) A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun Surv Tutorials 11(1):116–130

    Article  Google Scholar 

  63. Wang B, Liu KJR (2011) Advances in cognitive radio networks: a survey. IEEE J Sel Top Signal Process 5(1):5–23

    Article  Google Scholar 

  64. Rabbachin A, Quek TQS, Hyundong S et al (2011) Cognitive network interference. IEEE J Sel Areas Commun 29(2):480–493

    Article  Google Scholar 

  65. Akyildiz IF, LeeW Y, Vuran MC et al (2008) A survey on spectrum management in cognitive radio networks. IEEE Commun Mag 46(4):40–48

    Article  Google Scholar 

  66. Hamid M, Mohammed A, Yang Z (2010) On spectrum sharing and dynamic spectrum allocation: MAC layer spectrum sensing in cognitive radio networks, In: 2010 WRI international conference on communications and mobile computing, Shenzhen, China, pp 183–187

    Google Scholar 

  67. Subramanian AP, Gupta H, Das S R et.al (2007) Fast spectrum allocation in coordinated dynamic spectrum access based cellular networks. In: 2007 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks, Dublin, Ireland, pp 320–330

    Google Scholar 

  68. Raman C, Yates RD, Mandayam NB (2005) Scheduling variable rate links via a spectrum server. In: 2005 1st IEEE international symposium on new frontiers in dynamic spectrum access networks (DySPAN), Baltimore, MD, United States, pp 110–118

    Google Scholar 

  69. Zekavat SA, Li X (2005) User-central wireless system: ultimate dynamic channel allocation. In: 2005 1st IEEE international symposium on new frontiers in dynamic spectrum access networks (DySPAN), Baltimore, MD, United States, pp 82–87

    Google Scholar 

  70. Zheng H, Cao L (2005) Device-centric spectrum management. In: 2005 1st IEEE international symposium on new frontiers in dynamic spectrum access networks (DySPAN), Baltimore, MD, United States, pp 56–65

    Google Scholar 

  71. Letaief KB, Zhang W (2009) Cooperative communications for cognitive radio networks. Proc IEEE 97(5):878–893

    Article  Google Scholar 

  72. De Domenico A, Strinati EC, Di Benedetto M-G (2012) A survey on MAC strategies for cognitive radio networks. IEEE Commun Surv Tutorials 14(1):21–44

    Article  Google Scholar 

  73. Salami G, Durowoju O, Attar A et al (2011) Comparison between the centralized and distributed approaches for spectrum management. IEEE Commun Surv Tutorials 13(2):274–290

    Article  Google Scholar 

  74. Visotsky E, Kuffner S, Peterson R (2005) On collaborative detection of tv transmissions in support of dynamic spectrum sharing. In: Proceedings of IEEE DySPAN 2005, pp 338–345

    Google Scholar 

  75. Amir G, Elvino SS (2005) Collaborative spectrum sensing for opportunistic access in fading environments. In: Proceedings of 1st IEEE international symposium new front. Dynamic spectrum networking DySPAN. Baltimore, MD, United States, pp 131–136

    Google Scholar 

  76. Unnikrishnan J, Veeravalli VV (2008) Cooperative spectrum sensing for primary detection in cognitive radio. IEEE J Sel Top Signal Process 2(1):18–27

    Article  Google Scholar 

  77. Li Z, Yu F, Huang M (2009) A cooperative spectrum sensing consensus scheme in cognitive radios. In: Proceedings of IEEE INFOCOM 2009, pp 2546–2550

    Google Scholar 

  78. Ganesan G, Li Y (2007) Cooperative spectrum sensing in cognitive radio, Part I: two user networks. IEEE Trans Wireless Commun 6(6):2204–2212

    Article  Google Scholar 

  79. Ganesan G, Li Y (2007) Cooperative spectrum sensing in cognitive radio, Part II: multiuser networks. IEEE Trans Wireless Commun 6(6):2214–2222

    Article  Google Scholar 

  80. Zhang W, Letaief KB (2008) Cooperative spectrum sensing with transmit and relay diversity in cognitive radio networks-[transaction letters]. IEEE Trans Wireless Commun 7(12):4761–4766

    Article  Google Scholar 

  81. Akyildiz I, BrandonF L, Balakrishnan R (2011) Cooperative spectrum sensing in cognitive radio networks: a survey. Phys Commun 4:40–62

    Article  Google Scholar 

  82. Chair Z, Varshney PK (1986) Optimal data fusion in multiple sensor detection systems. IEEE Trans Aerosp Electron Syst 22(1):98–101

    Article  Google Scholar 

  83. Quan Z, Cui S, Sayed AH, Poor HV (2008) Wideband spectrum sensing in cognitive radio networks. In: Proceedings of IEEE ICC, Beijing, pp 901–906

    Google Scholar 

  84. Guo C, Zhang T, Zeng Z, Feng C (2006) Investigation on spectrum sharing technology based on cognitive radio. In: Proceedings of first international conference on communications and networking in China (ChinaCom), Beijing, pp 1–5

    Google Scholar 

  85. Taherpour A, Gazor S, Kenari MN (2008) Wideband spectrum sensing in unknown white gaussian noise. J Inst Eng Technol 2(6):736–771

    Google Scholar 

  86. Cabric D, Tkachenko A, Broders RW (2006) Spectrum sensing measurements of pilot, energy, and collaborative detection. In: Proceeding of IEEE MILCOM. Washington DC, pp 1–7

    Google Scholar 

  87. Sai SN, Corderio C, Challapali K (2005) Spectrum agile radios: utilization and sensing architectures. Proceedings of IEEE DySPAN, Baltimore, pp 160–169

    Google Scholar 

  88. Sahai A, Hoven N, Tandra R (2004) Some fundamental limits on cognitive radio. In Proceedings of Allerton Conferences, Monticello

    Google Scholar 

  89. Proakis John G (2001) Digital communications, 4th edn. McGraw-Hill, New York

    MATH  Google Scholar 

  90. Qihang P, Kun Z, Jun W, Shaoqian L (2006) A distributed spectrum sensing scheme based on credibility and evidence theory in cognitive radio context. In: Proceedings of 17th annual IEEE international symposium on personal, indoor and mobile radio communications (PIMRC), Helsinki, pp 1–5

    Google Scholar 

  91. Gardner WA, Spooner CM (1992) Signal interception: performance advantages of cyclic-feature detectors. IEEE Trans Commun Jan 40:149–159

    Article  MATH  Google Scholar 

  92. Han N, Shon S, Chung JH, Kim JM (2006) Spectral correlation based signal detection method for spectrum sensing in IEEE 802.22 WRAN systems. In: Proceedings of international conferences on advanced communication technology, Phoenix Park, Korea, 20–22(3):1765–1770

    Google Scholar 

  93. Lunden J, Koivunen V, Huttunen A, Poor HV (2007) Spectrum sensing in cognitive radios based on multiple cyclic frequencies. In: Proceedings of 2nd international conferences on cognitive radio oriented wireless networking communication (CrownCom), Orlando, FL, Jul 31–Aug 3

    Google Scholar 

  94. Oner M, Jondral FK (2007) On the extraction of the channel allocation information in spectrum pooling systems. IEEE J Sel Areas Commun (25):558–565

    Google Scholar 

  95. Si JB (2010) Wireless cooperative transmission and the application in cognitive radio networks. Xidian University, Xian

    Google Scholar 

  96. Li MM (2011) Research on key techniques in cognitive MIMO wireless networks. Beijing University of Posts and Telecommunications, Beijing

    Google Scholar 

  97. Amir G, Elvino SS (2007) Spectrum sensing in cognitive radio networks: the cooperation-processing tradeoff. Wirel Commun Mobile Comput 7(9):1049–1060

    Article  Google Scholar 

  98. Amir G, Elvino SS (2007) Opportunistic spectrum access in fading channels through collaborative sensing. J Commun 2(2):71–82

    Google Scholar 

  99. Sun CH, Zhang W, Letaief KB (2007) Cooperative spectrum sensing for cognitive radios under bandwidth constraints. In: IEEE wireless communication networking conferences WCNC. China, Kowloon, pp 1–5

    Google Scholar 

  100. Sun CH, Zhang W, Letaief KB (2007) Cluster-based cooperative spectrum sensing in cognitive radio systems. In: IEEE International conference on communications, 2007. ICC‘07. Glasgow, pp 2511–2515

    Google Scholar 

  101. Liang YC, Zeng YH, Peh E et al (2008) Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans Wirel Commun 7(4):1326–1337

    Google Scholar 

  102. Shen JY, Jiang T, Liu, SY et al (2009) Maximum channel throughput via cooperative spectrum sensing in cognitive radio networks. IEEE Trans Wirel Commun 8(10): 5166–5175

    Google Scholar 

  103. Zhang W, Mallik RK, Letaief KB (2008) Cooperative spectrum sensing optimization in cognitive radio networks. In: IEEE international conference on communications, China, pp 3411–3415

    Google Scholar 

  104. Hillenbrand J, Weiss T, Jondral FK (2005) Calculation of detection and false alarm probabilities in spectrum pooling systems. IEEE Commun Lett 9(4): 349–351

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiling Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, M., Wang, A., Pan, JS. (2016). Introduction. In: Cognitive Wireless Networks Using the CSS Technology. Lecture Notes in Electrical Engineering, vol 384. Springer, Cham. https://doi.org/10.1007/978-3-319-31095-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31095-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31094-7

  • Online ISBN: 978-3-319-31095-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics