Fuzzy Sets and Fuzzy Logic in the Human Sciences

  • Michael SmithsonEmail author
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 341)


The development of fuzzy set theory and fuzzy logic provided an opportunity for the human sciences to incorporate a mathematical framework with attractive properties. The potential applications include using fuzzy set theory as a descriptive model of how people treat categorical concepts, employing it as a prescriptive framework for “rational” treatment of such concepts, and as a basis for analysing graded membership response data from experiments and surveys. However, half a century later this opportunity still has not been fully grasped. This chapter surveys the history of fuzzy set applications in the human sciences, and then elaborates the possible reasons why fuzzy set concepts have been relatively under-utilized therein.


Human sciences Fuzzy sets Fuzzy logic Grade of membership Fuzzy logical model of perception 


  1. 1.
    Allinger, G.M., Feinzig, S.L., Janak, E.A.: Fuzzy sets and personnel selection: discussion and an application. J. Occup. Organ. Psychol. 66, 163–169 (1993)CrossRefGoogle Scholar
  2. 2.
    Biin, J.M., Whinston, A.B.: Fuzzy sets and social choice. J. Cybern. 3, 28–33 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bilgic, T., Turksen, I.B.: Measurement of membership functions: theoretical and empirical work. In: Dubois, D., Prade, H. (eds.) Handbook of Fuzzy Sets and Systems. Fundamentals of Fuzzy Sets, vol. 1. Kluwer, New York, (2000)Google Scholar
  4. 4.
    Billot, A.: From fuzzy set theory to non-additive probabilities: how have economists reacted? Fuzzy Sets Syst. 49, 75–90 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Capozza, D., Nanni, R.: Differentiation processes for social stimuli with different degrees of category representativeness. Eur. J. Soc. Psychol. 156, 399–412 (1986)CrossRefGoogle Scholar
  6. 6.
    Clark, W.R., Gilligan, M.J., Golder, M.: A simple multivariate test for asymmetric hypotheses. Polit. Anal. 14, 311–331 (2006)CrossRefGoogle Scholar
  7. 7.
    Cooper, B., Glaesser, J.: Paradoxes and pitfalls in using fuzzy set QCA: illustrations from a critical review of a study of educational inequality. Sociol. Res. Online 16 (2011).
  8. 8.
    Crowther, C.S., Batchelder, W.H., Hu, X.: A measurement-theoretic analysis of the fuzzy logic model of perception. Psychol. Rev. 102, 396–408 (1995)CrossRefGoogle Scholar
  9. 9.
    Grandmont, J.M.: Intermediate preferences and the majority rule. Econometrica 46, 317–330 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hersh, H.M., Caramazza, A.: A fuzzy set approach to modifiers and vagueness in natural language. J. Exp. Psychol. Gen. 105, 254–276 (1976)CrossRefGoogle Scholar
  11. 11.
    Hesketh, B., McLachlan, K., Gardner, D.: Work adjustment theory: an empirical test using a fuzzy rating scale. J. Vocat. Behav. 40, 318–337 (1992)CrossRefGoogle Scholar
  12. 12.
    Hesketh, B., Pryor, R.G., Gleitzman, M., Hesketh, T.: Practical applications and psychometric evaluation of a computerised fuzzy graphic rating scale. In: Zetenyi, T. (ed.) Fuzzy Sets in Psychology. Advances in Psychology, vol. 56. North-Holland, Amsterdam (1988)Google Scholar
  13. 13.
    Katz, A., vom Hau, M., Mahoney, J.: Explaining the great reversal in Spanish America. Sociol. Methods Res. 33, 539–573 (2005)Google Scholar
  14. 14.
    Kay, C., McDaniel, C.: Color categories as fuzzy sets (Working Paper No. 44). University of California, Language Behavior Research Laboratory, Berkley (1975)Google Scholar
  15. 15.
    Kempton, W.: Category grading and taxonomic relations: a mug is a sort of a cup. Am. Ethnol. 5, 44–65 (1978)CrossRefGoogle Scholar
  16. 16.
    Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.: Foundations of Measurement. Academic Press, New York (1971)zbMATHGoogle Scholar
  17. 17.
    Mahoney, J., Goertz, G.: A tale of two cultures: contrasting quantitative and qualitative research. Polit. Anal. 14, 227–249 (2006)CrossRefGoogle Scholar
  18. 18.
    Manton, K.G., Woodbury, M.A., Tolley, H.D.: Statistical Applications Using Fuzzy Sets. Wiley, New York (1994)zbMATHGoogle Scholar
  19. 19.
    Marchant, T.: The measurement of membership by comparisons. Fuzzy Sets Syst. 148, 157–177 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Marchant, T.: The measurement of membership by subjective ratio estimation. Fuzzy Sets Syst. 148, 179–199 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Massaro, D.W.: Speech Perception by Eye and Ear: A Paradigm for Psychological Inquiry. Lawrence Erlbaum, Hillsdale (1987)Google Scholar
  22. 22.
    Massaro, D.W.: Testing between the TRACE model and the fuzzy logical model of speech perception. Cogn. Psychol. 21, 398–421 (1989)CrossRefGoogle Scholar
  23. 23.
    Masters, G.N.: A Rasch model for partial credit scoring. Psychometrika 47, 149–174 (1982)CrossRefzbMATHGoogle Scholar
  24. 24.
    McDowell, B.D., Oden, G.C.: Categorical decision, rating judgments, and information preservation. Unpublished manuscript, University of Iowa (1995)Google Scholar
  25. 25.
    McNeill, D., Freiberger, P.: Fuzzy Logic. Simon and Schuster, New York (1993)zbMATHGoogle Scholar
  26. 26.
    Muraki, E.: A generalized partial credit model: application of an EM algorithm. Appl. Psychol. Measure. 16(2), 159–76 (1992)Google Scholar
  27. 27.
    Oden, G.C.: Fuzziness in semantic memory: choosing exemplars of subjective categories. Mem. Cognit. 5, 198–204 (1977)CrossRefGoogle Scholar
  28. 28.
    Oden, G.C., Massaro, D.W.: Integration of featural information in speech perception. Psychol. Rev. 85, 172–191 (1978)CrossRefGoogle Scholar
  29. 29.
    Osherson, D.W., Smith, E.E.: On the adequacy of prototype theory as a theory of concepts. Cognition 9, 35–58 (1981)CrossRefGoogle Scholar
  30. 30.
    Pipino, L.L., van Gigch, J.P., Tom, G.: Experiments in the representation and manipulation of labels of fuzzy sets. Behav. Sci. 26, 216–228 (1981)CrossRefGoogle Scholar
  31. 31.
    Ponsard, C.: L’imprécision et son traitement en analyse économique. Revue Économique Politique 1, 17–37 (1975)Google Scholar
  32. 32.
    Ponsard, C.: Fuzzy mathematical models in economics. Fuzzy Sets Syst. 28, 273–283 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Quiggin, J.: Generalized Expected Utility Theory: The Rank Dependent Model. Kluwer, Boston (1993)CrossRefzbMATHGoogle Scholar
  34. 34.
    Ragin, C.C.: The Comparative Method: Moving Beyond Qualitative and Quantitative Strategies. University of California Press, Berkeley (1987)Google Scholar
  35. 35.
    Ragin, C.C.: Fuzzy-Set Social Science. University of Chicago Press, Chicago (2000)Google Scholar
  36. 36.
    Ragin, C.C.: Redesigning Social Inquiry: Fuzzy Sets and Beyond. University of Chicago Press, Chicago (2008)CrossRefGoogle Scholar
  37. 37.
    Reagan, R.T., Mosteller, F., Youtz, C.: Quantitative meanings of verbal probability expressions. J. Appl. Psychol. 74, 433–442 (1989)CrossRefGoogle Scholar
  38. 38.
    Roberts, J.S., Donoghue, J.R., Laughlin, J.E.: A general item response theory model for unfolding unidimensional polytomous responses. Appl. Psychol. Meas. 24, 3–32 (2000)CrossRefGoogle Scholar
  39. 39.
    Rosch, E.: Cognitive representations of semantic categories. J. Exp. Psychol. Gen. 104, 192–233 (1975)CrossRefGoogle Scholar
  40. 40.
    Samejima, F.: Estimation of latent ability using a response pattern of graded scores. Psychometrika Monogr. Suppl. 34, 100–114 (1969)Google Scholar
  41. 41.
    Simpson, R.H.: The specific meanings of certain terms indicating differing degrees of frequency. Quart. J. Speech 30, 328–330 (1944)CrossRefGoogle Scholar
  42. 42.
    Smithson, M.: Fuzzy Set Analysis for the Behavioral and Social Sciences. Springer, New York (1987)CrossRefGoogle Scholar
  43. 43.
    Smithson, M.: Fuzzy set inclusion: linking fuzzy set methods with mainstream techniques. Sociol. Methods Res. 33, 431–461 (2005)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Smithson, M., Merkle, E.C.: Generalized Linear Models for Categorical and Continuous Limited Dependent Variables. Chapman and Hall, Boca Raton (2014)zbMATHGoogle Scholar
  45. 45.
    Smithson, M., Verkuilen, J.: Fuzzy Set Theory: Applications in the Social Sciences. Quantitative Applications in the Social Sciences Series. Sage, Belmont (2006)zbMATHGoogle Scholar
  46. 46.
    Smithson, M., Verkuilen, J.: A better lemon-squeezer? Maximum likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006)CrossRefGoogle Scholar
  47. 47.
    Smithson, M., Hesketh, B.: Using fuzzy sets to extend Holland’s theory of occupational interests. In: Reznik, L., Dimitrov, V., Kacprzyk, J. (eds.) Fuzzy System Design: Social and Engineering Applications. Studies in Fuzziness and Soft Computing, vol. 17. Physica-Verlag, Berlin (1998)Google Scholar
  48. 48.
    Smithson, M., Oden, C.G.: Fuzzy set theory and applications in psychology. In: Zimmermann, H.-J. (ed.) Practical Applications of Fuzzy Technologies. Kluwer, Norwell (1999)Google Scholar
  49. 49.
    Smithson, M., Sopena, A., Platow, M.: When is group membership zero-sum? Effects of ethnicity, threat, and social identity on dual national identity. PLoS ONE 1–18 (2015). doi: 10.1371/journal.pone.0130539
  50. 50.
    Spies, M.: Syllogistic Inference under Uncertainty. Psychologie Verlags Union, Munich (1989)Google Scholar
  51. 51.
    Stoklasa, J., Talasek, T., Musilova, J.: Fuzzy approach: a new chapter in the methodology of psychology? Hum. Aff. 24, 189–203 (2014)Google Scholar
  52. 52.
    Takane, Y., de Leeuw, J.: On the relationship between item response theory and factor analysis of discretized variables. Psychometrika 52, 393–408 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Thiem, A., Baumgartner, M., Bol, D.: Still lost in translation! A correction of three misunderstandings between configurational comparativists and regressional analysts. Comp. Polit. Stud. 1–33 (2015). doi: 10.1177/0010414014565892
  54. 54.
    Tversky, A., Kahneman, D.: Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment. Psychol. Rev. 90, 293–315 (1983)CrossRefGoogle Scholar
  55. 55.
    Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertain. 5(4), 297–323 (1992)CrossRefzbMATHGoogle Scholar
  56. 56.
    Tversky, A., Kahneman, D.: Judgments by and of representativeness. In: Kahneman, D., Slovic, P., Tversky, A. (eds.) Judgment Under Uncertainty: Heuristics and Biases. Cambridge University Press, New York (1982)Google Scholar
  57. 57.
    Verkuilen, J.: Assigning membership in a fuzzy set analysis. Sociol. Methods Res. 33, 462–496 (2005)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Verkuilen, J., Smithson, M.: Mixed and mixture regression models for continuous bounded responses using the beta distribution. J. Educ. Behav. Stat. 37, 82–113 (2012)CrossRefGoogle Scholar
  59. 59.
    Wallsten, T.S., Budescu, D.V., Rapoport, A., Zwick, R., Forsyth, B.H.: Measuring the vague meanings of probability terms. J. Exp. Psychol. Gen. 115, 348–65 (1986)Google Scholar
  60. 60.
    Woodbury, M.A., Clive, J.: Clinical pure types as a fuzzy partition. J. Cybern. 4, 111–121 (1974)CrossRefzbMATHGoogle Scholar
  61. 61.
    Woodbury, M.A., Clive, J., Garson, A.: Mathematical typology: a grade of membership technique for obtaining disease definition. Comput. Biomed. Res. 11, 277–298 (1978)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Research School of PsychologyThe Australian National UniversityCanberraAustralia

Personalised recommendations