Fuzzy Sets in Earth and Space Sciences

  • Irem OtayEmail author
  • Cengiz Kahraman
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 341)


Earth science refers to the field of science dealing with planet Earth while space science pertains several scientific disciplines studying the upper atmosphere, space, and celestial bodies rather than Earth. The fuzzy set theory is one of the tools that has been recently used in the earth and space sciences. In this chapter, we review and analyze the papers utilizing fuzzy logic in earth and space science problems from Scopus database. The graphical and tabular illustrations are presented for the subject areas, publication years and sources of the papers on earth and space sciences.


Earth science Space science Fuzzy set theory Geology Astronomy Oceanography Meteorology 


  1. 1.
    Angelo, J.A.: Encyclopedia of Space and Astronomy. Facts on File, Inc., NY-USA (2006)Google Scholar
  2. 2.
    Amanullah, S., Sundaram, A., Narayanan, E.S.L.: Fuzzy set theory application in meteorology—rainfall modelling. Indian J. Environ. Prot. 25(8), 673–679 (2005)Google Scholar
  3. 3.
    Barry, J.M., Gathmann, T.P.: Application of fuzzy logic control to the IntelliSTARTM architecture. In: Proceedings of the 16th AAS Rocky Mountain Guidance and Control Conference on Advances in the Astronautical Sciences, vol. 81, pp. 423–430, Keystone-CO, USA (1993)Google Scholar
  4. 4.
    Barua, A., Khorasani, K.: Hierarchical fault diagnosis and fuzzy rule-based reasoning for satellites formation flight. IEEE Trans. Aerosp. Electron. Syst. 47(4), 2435–2456 (2011)Google Scholar
  5. 5.
    Cullen, K.E.: Earth Science: The People Behind the Science. Chelsea House, NY-USA (2006)Google Scholar
  6. 6.
    Demicco, R.V.: Fuzzy Logic and Earth Science: An Overview, Fuzzy Logic in Geology. Academic Press, London (2003)Google Scholar
  7. 7.
    Ding, Y., Han, H., Liu, F.: Intelligent integrated data processing model for oceanic warning system. Knowl. Based Syst. 23(1), 61–69 (2010)CrossRefGoogle Scholar
  8. 8.
    Feather, R.M., Snyder, S.L. : Earth Science. McGraw-Hill, Glencoe (1999)Google Scholar
  9. 9.
    Furfaro, R., Dohm, J.M., Fink, W., Kargel, J., Schulze-Makuch, D., Fairen, A.G., Palmero-Rodriguez, A., Baker, V.R., Ferre, P.T., Hare, T.M., Tarbell, M.A., Miyamoto, H., Komatsu, G.: The search for life beyond Earth through fuzzy expert systems. Planet. Space Sci. 56, 448–472 (2008)CrossRefGoogle Scholar
  10. 10.
    Glumov, V.M., Krutova, I.N.: A fuzzy logic adaptation circuit for control systems of deformable space vehicles: its design. Autom. Remote C 63(7), 1109–1122 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Guo, H., Wu, J.: Space Science & Technology in China: A Roadmap to 2050. Science Press Beijing, ISBN 978-7-03-025703-1,(2010)Google Scholar
  12. 12.
    Heidari, M., Nabavi, S.H., Shamshirband, S.: Application of an adaptive neural-fuzzy system to establish a relationship among nonlinear phenomena in meteorology to obtain monthly rainfall. In: ICSTE 2010 Proceedings of 2nd International Conference on Software Technology and Engineering, vol. 2, pp. 232–235 (2010)Google Scholar
  13. 13.
    Huang, C.: Fuzzy Logic and Earthquake Research, Fuzzy Logic in Geology. Academic Press, London (2003)Google Scholar
  14. 14.
    Kaya, İ., Kahraman, C.: Process capability analyses with fuzzy parameters. Expert Syst. Appl. 38, 11918–11927 (2011)CrossRefGoogle Scholar
  15. 15.
    Kim, S.-W., Park, S.-Y., Park, C.-D.: Preliminary test of adaptive neuro-fuzzy inference system controller for spacecraft attitude control. J. Astron. Space Sci. 29(4), 389–395 (2002)CrossRefGoogle Scholar
  16. 16.
    Kumar, J.K., Konno, M., Yasuda, N.: Subsurface soil-geology interpolation using fuzzy neural network. J. Geotech. Geoenviron. Eng. 126(7), 632–639 (2000)CrossRefGoogle Scholar
  17. 17.
    Li, J.-X., Zhang, R., Jin, B.-G., Wang, H.-Z.: Possibility estimation of generating internal waves in the northwest Pacific Ocean using the fuzzy logic technique. J. Marine Sci. Technol. 20(2), 237–244 (2012)Google Scholar
  18. 18.
    Lu, D.-W., Wu, L.R., Li, Z.-X.: The evaluation of mine geology disasters based on fuzzy mathematics and grey theory. J. Coal Sci. Eng. 13(4), 480–483 (2007)Google Scholar
  19. 19.
    Lu, Y.-D., Zhang, J., Li, M.-S.: GIS-based evaluation of urban environmental engineering geology by fuzzy logic: a case study of Lüeyang County, Shaanxi Province. J. Nat. Disasters 14(2), 93–98 (2005)Google Scholar
  20. 20.
    Monroe, J.S., Wicander, R.: The Changing Earth: Exploring Geology and Evolution, 7th edn. Cengage Learning, CT-USA (2015)Google Scholar
  21. 21.
    Moradi, M., Esmaelzadeh, R., Ghasemi, A.: Adjustable adaptive fuzzy attitude control using nonlinear SISO structure of satellite dynamics. T. Jpn. Soc. Aeronaut. S 55(5), 265–273 (2012)CrossRefGoogle Scholar
  22. 22.
    Morello, E.B., Galibert, G., Smith, D., Ridgway, K.R., Howell, B., Slawinski, D., Timms, G.P., Evans, K., Lynch, T.P.: Quality control (QC) procedures for Australia’s National Reference Station’s sensor data-comparing semi-autonomous systems to an expert oceanographer. Methods Oceanogr. 9, 17–33 (2014)CrossRefGoogle Scholar
  23. 23.
    Nichols, C.R., Williams, R.G.: Encyclopedia of Marine Science. Facts on File, Inc., NY-USA (2009)Google Scholar
  24. 24.
    Omar, H.M.: Designing integrated fuzzy guidance law for aerodynamic homing missiles using genetic algorithms. T. Jpn. Soc. Aeronaut. S 53(180), 99–104 (2010)CrossRefGoogle Scholar
  25. 25.
    Piedra-Fernandez, J.A., Ortega, G., Wang, J.Z., Canton-Garbin, M.: Fuzzy content-based image retrieval for oceanic remote sensing. EEE Trans. Geosci. Remote Sens. 52(9), 5422–5431 (2014)CrossRefGoogle Scholar
  26. 26.
    Potyupkin, A.Y.: Application of a fuzzy measure in problems of monitoring the technical state of space vehicles. Meas. Tech. 45(7), 689–695 (2002)CrossRefGoogle Scholar
  27. 27.
    Rahoma, W.A., Rahoma, U.A., Hassan, A.H.: Application of neuro-fuzzy techniques for solar radiation. J. Comput. Sci. 7(10), 1605–1611 (2011)CrossRefGoogle Scholar
  28. 28.
    Sathiya, R.D., Vaithiyanathan, V., Suraj, M.S., Venkatraman, G.B., Sathivel, P.: Assessing the wave heights of the ocean using neural networks and fuzzy logic. In: Proceedings of 2013 International Conference on Emerging Trends in VLSI, Embedded System, Nano Electronics and Telecommunication System, ICEVENT 2013, Tiruvannamalai, Tamil Nadu, India (2013)Google Scholar
  29. 29.
    Schneider, P.: Extragalactic Astronomy and Cosmology. Springer-Verlag Berlin Heidelberg, (2015)Google Scholar
  30. 30.
    Shamir, L., Nemiroff, R.J.: Astronomical pipeline processing using fuzzy logic. Appl. Soft Comput. J. 8(1), 79–87 (2008)CrossRefGoogle Scholar
  31. 31.
    Shioiri, H., Ueno, S.: Three-dimensional collision avoidance control law for aircraft using risk function and fuzzy logic. T. Jpn. Soc. Aeronaut. S 47(154), 253–261 (2004)CrossRefGoogle Scholar
  32. 32.
    Srivastava, G., Panda, S.N., Mondal, P., Liu, J.: Forecasting of rainfall using ocean-atmospheric indices with a fuzzy neural technique. J. Hydrol. 395(3–4), 190–198 (2010)Google Scholar
  33. 33.
    Sun, J., Li, Y.: Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering. Geophysics 80(4) (2014)Google Scholar
  34. 34.
    Sylaios, G., Bouchette, F., Tsihrintzis, V.A., Denamiel, C.: A fuzzy inference system for wind-wave modelling. Ocean Eng. 36(17–18), 1358–1365 (2009)CrossRefGoogle Scholar
  35. 35.
    Valdés, J.J., Bonham-Carter, G.: Time dependent neural network models for detecting changes of state in complex processes: applications in earth sciences and astronomy. Neural Netw. 19(2), 196–207 (2006)CrossRefzbMATHGoogle Scholar
  36. 36.
    Vidal-Fernandez, E., Piedra-Fernandez, J.A., Almendros-Jimenez, J.M., Canton-Garbin, M.: OBIA system for identifying mesoscale oceanic structures in SeaWiFS and MODIS-aqua images. IEEE J. Sel. Top. Appl. 8(3), 1256–1265 (2015)Google Scholar
  37. 37.
    Wang, P., Zhao, X., Yang, D.: Fixed thrust optimal-fuzzy combined control for spacecraft formation flying. T. Jpn. Soc. Aeronaut. S 47(155), 9–16 (2004)CrossRefGoogle Scholar
  38. 38.
    Wang, Y., Li, Y., Liu, W., Gao, Y.: Assessing operational ocean observing equipment (OOOE) based on the fuzzy comprehensive evaluation method. Ocean Eng. 107, 54–59 (2015)CrossRefGoogle Scholar
  39. 39.
    Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Zhang Y.,Cao Y.: A fuzzy quantification approach of uncertainties in an extreme wave height modeling. Acta. Oceanologica. Sinica. 34(3), 90–98 (2015)Google Scholar
  41. 41.
    Zhang, R., Yin, L., Gu, H.: Environment perception for AUV in uncertain ocean environment. Jisuanji Yanjiu yu Fazhan/Comput. Res. Dev. 50(9), 1981–1991 (2013)Google Scholar
  42. 42.
    Zuchora-Walske, C.: Science Discovery Timelines, Key Discoveries in Earth and Space Science. Lerner Publishing Group, Inc., MN-USA (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Managemet EngineeringIstanbul Technical UniversityMacka, IstanbulTurkey
  2. 2.Department of Industrial EngineeringIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations