Advertisement

Type-1 to Type-n Fuzzy Logic and Systems

  • M. H. Fazel ZarandiEmail author
  • R. Gamasaee
  • O. Castillo
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 341)

Abstract

In this chapter, the motivation for using fuzzy systems, the mathematical concepts of type-1 to type-n fuzzy sets, logic, and systems as well as their applications in solving real world problems are presented.

Keywords

Type-n fuzzy sets Type-2 fuzzy sets T-norm S-norm Takagi-Sugeno-Kang (TSK) fuzzy system 

References

  1. 1.
    Zadeh, L.A.: Fuzzy sets. Inf. Control, 8, 338–353 (1965)Google Scholar
  2. 2.
    Zadeh, L.A.: Is there a need for fuzzy logic. Inf. Sci. 178, 2751–2779 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. 8, 199–249 (1975)Google Scholar
  4. 4.
    Liang, Q., Mendel, J.M.: Interval type 2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8, 535–550 (2000)CrossRefGoogle Scholar
  5. 5.
    Aisbett, J., Rickard, J.T., Morgenthaler, D.G.: Type-2 fuzzy sets as functions on spaces. IEEE Trans. Fuzzy Syst. 18(4), 841–844 (2010)CrossRefGoogle Scholar
  6. 6.
    Celikyilmaz, A., Türksen, I.B.: Modeling uncertainty with fuzzy logic with recent theory and applications. Springer-Verlag, Berlin Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Klir, G.J., Yuan, B.: Fuzzy sets and fuzzy logic theory and applications. Prentice Hall (1995)Google Scholar
  8. 8.
    Dombi, J.: A general class of fuzzy operators, the De Morgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets Syst. 8, 149–163 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Frank, M. J.: On the simultaneous associativity of F(x, y) and x + y  F(x, y). Aequationes Mathe. 19, 194–226 (1979)Google Scholar
  10. 10.
    Schweizer, B., Sklar, A.: Associative functions and abstract semi groups. Publ. Math. Debrecen 10, 69–81 (1963)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Schweizer, B., Sklar, A.: Associative functions and statistical triangle inequalities. Publ. Math. Debrecen 8, 69–81 (1961)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Schweizer, B., Sklar, A.: Statistical metric spaces. Pac. J. Math. 10, 313–334 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York (1983)zbMATHGoogle Scholar
  14. 14.
    Weber, S.: A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms. Fuzzy Sets Syst. 13, 247–271 (1984)CrossRefGoogle Scholar
  15. 15.
    Yager, R.R.: On a general class of fuzzy connectives. Fuzzy Sets Syst. 4, 235–242 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New YorkGoogle Scholar
  17. 17.
    Yu, Y.D.: Triangular norms and TNF-sigma-algebras. Fuzzy Sets Syst. 16, 251–264 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Turksen, I.B.: An Ontological and Epistemological Perspective of Fuzzy Theory. Elsevier, The Netherlands (2006)zbMATHGoogle Scholar
  19. 19.
    Zadeh, L.A.: Calculus of fuzzy restrictions, Fuzzy sets and their applications to cognitive decision processes, pp. 1–40. Academic Press, London (1975)Google Scholar
  20. 20.
    Zadeh, L. A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 1, 28–44 (1973)Google Scholar
  21. 21.
    Gaines, B.R.: Foundations of fuzzy reasoning. Int. J. Man Mach. Stud. 8, 623–668 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Goguen, J. A.: The logic of inexact concepts. Synthese 19, 325–373 (1968–1969)Google Scholar
  23. 23.
    Łukasiewicz, J.: O logic etrójwartościowej (in Polish). Ruchfilozoficzny 5, 170–171 (1920). English translation: On three-valued logic. In: Borkowski, L. (ed.) Selected Works by Jan Łukasiewicz. North–Holland, Amsterdam, pp. 87–88 (1970)Google Scholar
  24. 24.
    Smets, P., Magrez, P.: Implication in fuzzy logic. Int. J. Approximate Reasoning 1, 327–347 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Reichenbach, H.: Wahrscheinlichkeitslehre: eine Untersuchungüber die logischen und mathematischen Grundlagen der Wahrscheinlichkeitsrechnung (1935)Google Scholar
  26. 26.
    Reichenbach, H.: The Theory of Probability, an Inquiry into the Logical and Mathematical Foundations of the Calculus of Probability. University of California Press (1949)Google Scholar
  27. 27.
    Willmott, R.: Two fuzzier implication operators in theory of fuzzy power sets. Fuzzy Sets Syst. 4, 31–36 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wu, W.M.: Fuzzy reasoning and fuzzy relational equations. Fuzzy Sets Syst. 20, 67–78 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Klir, G. J.: Multivalued logic versus modal logics: alternative frameworks for uncertainty modeling, In: Wang, P.P. (ed.) Advances in Fuzzy Theory and Technology. Duke Univ., Durham, NCGoogle Scholar
  30. 30.
    Driankov, D., Saffiotti, A.: Fuzzy Logic Techniques for Autonomous Vehicle Navigation. Springer, Berlin, Heidelberg, GmbH (2001)CrossRefGoogle Scholar
  31. 31.
    Shim, E.A., Rhee, F., C.-H.: General type-2 fuzzy membership function design and its application to neural networks. In: 2011 IEEE International Conference on Fuzzy Systems. Taipei, Taiwan, June 27–30, 2011Google Scholar
  32. 32.
    Mendel, J.M.: Uncertainty Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice Hall, Upper Saddle River (2001)zbMATHGoogle Scholar
  33. 33.
    Karnik, N.N., Mendel, J.M., Liang, Q.: Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7(6) (1999)Google Scholar
  34. 34.
    Mendel, J.M., John, R.I.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)CrossRefGoogle Scholar
  35. 35.
    Liu, F.: An efficient centroid type reduction strategy for general type-2 fuzzy logic system. Inform. Sci. 178, 2224–2236 (2008)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Zhai, D., Mendel, J.M.: Enhanced centroid-flow algorithm for computing the centroid of general type-2 fuzzy sets, IEEE Trans. Fuzzy Syst. 20(5), 939–956 (2012)Google Scholar
  37. 37.
    Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set. Inform. Sci. 132, 195–220 (2001)Google Scholar
  38. 38.
    Wu, D., Mendel, J.M.: Enhanced Karnik-Mendel algorithms. IEEE Trans. Fuzzy Syst. 17(4), 923–934 (2009)CrossRefGoogle Scholar
  39. 39.
    Türksen, I.B.: Type Ι and Type ΙΙ fuzzy system modeling. Fuzzy Set. Syst. 106, 11–34 (1999)Google Scholar
  40. 40.
    Oliveira, J.V., Pedrycz, W.: Advances in fuzzy clustering and its applications. Wiley (2007)Google Scholar
  41. 41.
    Fazel Zarandi, M.H., Turksen, I.B., Torabi Kasbi, O.: Type-2 fuzzy modeling for desulphurization of steel process. Expert Syst. Appl. 32, 157–171 (2007)Google Scholar
  42. 42.
    Rhee, F., Choi, B.: Interval type-2 fuzzy membership function design and its application to radial basis function neural networks. In: Proceedings of the 2007 IEEE International Conference on Fuzzy Systems, pp. 2047–2052 (2007)Google Scholar
  43. 43.
    Rhee, F., Hwang, C.: A type-2 fuzzy C-means clustering algorithm, in: Proceedings of the 2001 Joint Conference IFSA/NAFIPS, 2001, pp. 1919–1926Google Scholar
  44. 44.
    Rhee, F., Hwang, C.: An interval type-2 fuzzy perceptron. In: Proceedings of the 2002 IEEE International Conference on Fuzzy Systems, pp. 1331–1335 (2002)Google Scholar
  45. 45.
    Rhee, F., Hwang, C.: An interval type-2 fuzzy K-nearest neighbor. In: Proceedings of the 2003 IEEE International Conference on Fuzzy Systems, pp. 802–807 (2003)Google Scholar
  46. 46.
    Choi, B. I., Rhee, F.C.: Interval type-2 fuzzy membership function generation methods for pattern recognition. Inf. Sci. 179, 2102–2122 (2009)Google Scholar
  47. 47.
    Hwang, C., Rhee, F.: Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-means. IEEE Trans. Fuzzy Syst. 15, 107–120 (2007)Google Scholar
  48. 48.
    Aliev, A.R., Pedrycz, W., Guirimov, B.G., Aliev, R.R., Ilhan, U., Babagil, M.: Evolution optimization. Inf. Sci. 181(9), 1591–1608 (2011)Google Scholar
  49. 49.
    Fazel Zarandi, M.H., Gamasaee, R., Turksen, I.B.: A type-2 fuzzy c-regression clustering algorithm for Takagi–Sugeno system identification and its application in the steel industry. Inf. Sci. 187, 179–203 (2012)Google Scholar
  50. 50.
    Melin, P., Castillo, O.: A review on type-2 fuzzy logic applications in clustering, classification and pattern recognition. Appl. Soft Comput. 21, 568–577 (2014)Google Scholar
  51. 51.
    Sharma, P., Bajaj, P.: Performance analysis of vehicle classification system using type-1 fuzzy, adaptive neuro-fuzzy and type-2 fuzzy inference system. In: Proceedings of the 2nd International Conference on Emerging Trends in Engineering and Technology. ICETET 2009, pp. 581–584, 2009 (art. no. 5395411)Google Scholar
  52. 52.
    Sharma, P., Bajaj, P.: Accuracy comparison of vehicle classification system using interval type-2 fuzzy inference system. In: Proceedings of the 3rd International Conference on Emerging Trends in Engineering and Technology, ICETET 2010, pp. 85–90 (2010)Google Scholar
  53. 53.
    Tan, W.W., Foo, C.L., Chua, T.W.: Type-2 fuzzy system for ECG arrhythmic classification. In: IEEE International Conference on Fuzzy Systems, 2007 (art. no. 4295478)Google Scholar
  54. 54.
    Pimenta, A.H.M., Camargo, H.A.: Interval type-2 fuzzy classifier design using genetic algorithms. In: 2010 IEEE World Congress on Computational Intelligence (WCCI), 2010 (art. no. 5584520)Google Scholar
  55. 55.
    Chumklin, S.: Auephanwiriyakul, S., Theera-Umpon, N.: Micro calcification detection in mammograms using interval type-2 fuzzy logic system with automatic membership function generation. In: 2010 IEEE World Congress on Computational Intelligence (WCCI), 2010 (art. no. 5584896)Google Scholar
  56. 56.
    Sanz, J., Fernandez, A., Bustince, H., Herrera, F.: A genetic algorithm for tuning fuzzy rule based classification systems with interval valued fuzzy sets. In: 2010 IEEE World Congress on Computational Intelligence (WCCI), 2010 (art.no. 5584097)Google Scholar
  57. 57.
    Wu, H., Mendel, J.M.: Classification of battlefield ground vehicles based on the acoustic emissions. Stud. Comput. Intell. 304, 55–77 (2010)CrossRefGoogle Scholar
  58. 58.
    Phong, P.A., Thien, K.Q.: Classification of cardiac arrhythmias using interval type2 TSK fuzzy system. In: Proceedings of the 1st International Conference Knowledge and Systems Engineering, pp. 1–6, 2009 (art. no. 5361742)Google Scholar
  59. 59.
    Abiyev, R.H., Kaynak, O., Alshanableh, T., Mamedov, F.: A type-2 neuro-fuzzy system based on clustering and gradient techniques applied to system identification and channel equalization. Appl. Soft Comput. J. 11, 1396–1406 (2011)CrossRefGoogle Scholar
  60. 60.
    Zeng, J., Liu, Z.-Q.: Type-2 fuzzy hidden Markov models to phoneme recognition. In: Proceedings of the International Conference on Pattern Recognition, vol. 1, pp. 192–195 (2004)Google Scholar
  61. 61.
    Abiyev, R.H., Kaynak, O.: Type-2 fuzzy neural structure for identification and control of time varying plants. IEEE Trans. Ind. Electron. 57, 4147–4159 (2010)CrossRefGoogle Scholar
  62. 62.
    Zheng, G., Xiao, J., Wang, J., Wei, Z.: A similarity measure between general type2 fuzzy sets and its application in clustering. In: Proceedings of the World Congress on Intelligent Control and Automation, pp. 6383–6387, 2010 (art. no.5554327)Google Scholar
  63. 63.
    Abiyev, R.H., Kaynak, O.: Type-2 fuzzy neural structure for identification and control of time varying plants. IEEE Trans. Ind. Electron. 57, 4147–4159 (2010)CrossRefGoogle Scholar
  64. 64.
    Ozkan, I., Turksen, B.: MiniMax ε-stable cluster validity index for type-2 fuzziness. In: Proceedings of the NAFIPS 2010 Conference, 2010 (art. no. 5548183)Google Scholar
  65. 65.
    Pedrycz, W.: Human centricity in computing with fuzzy sets: an interpretability quest for higher order granular constructs. J. Ambient Intell. Humaniz. Comput. 1, 65–74 (2010)CrossRefGoogle Scholar
  66. 66.
    Juang, C.-F., Huang, R.-B., Lin, Y.-Y.: A recurrent self-evolving interval type-2 fuzzy neural network for dynamic system processing. IEEE Trans. Fuzzy Syst. 17, 1092–1105 (2009)CrossRefGoogle Scholar
  67. 67.
    Türkşen, I.B.: Review of fuzzy system models with an emphasis on fuzzy functions. Trans. Inst. Meas. Control 31, 7–31 (2009)CrossRefGoogle Scholar
  68. 68.
    Ren, Q., Baron, L., Balazinski, M.: High order type-2 TSK fuzzy logic system. In: Proceedings of the NAFIPS 2010 Conference, 2008 (art. no. 4531215)Google Scholar
  69. 69.
    Qun, R., Baron, L., Balazinski, M.: Type-2 Takagi–Sugeno–Kang fuzzy logic modeling using subtractive clustering. In: Proceedings of the Annual Conference of the North American Fuzzy Information Processing Society—NAFIPS, 2006, pp. 120–125 (art. no. 4216787)Google Scholar
  70. 70.
    Melin, P., Interval type-2 fuzzy logic applications in image processing and pattern recognition. In: Proceedings of the 2010 IEEE International Conference on Granular Computing, GrC 2010, pp. 728–731 (2010)Google Scholar
  71. 71.
    Lopez, M., Melin, P., Castillo, O.: Comparative study of feature extraction methods of fuzzy logic type 1 and type-2 for pattern recognition system based on the mean pixels. Stud. Comput. Intell. 312, 171–188 (2010)CrossRefGoogle Scholar
  72. 72.
    Li, H., Zhang, X.: A hybrid learning algorithm based on additional momentum and self-adaptive learning rate. J. Comput. Inf. Syst. 6, 1421–1429 (2010)Google Scholar
  73. 73.
    Own, C.-M.: Switching between type-2 fuzzy sets and intuitionistic fuzzy sets: an application in medical diagnosis. Appl. Intell. 31, 283–291 (2009)CrossRefGoogle Scholar
  74. 74.
    Mendoza, O., Melin, P., Castillo, O.: Interval type-2 fuzzy logic and modular neural networks for face recognition applications. Appl. Soft Comput. J. 9, 1377–1387 (2009)CrossRefGoogle Scholar
  75. 75.
    Kim, G.-S., Ahn, I.-S., Oh, S.-K.: The design of optimized type-2 fuzzy neural networks and its application. Trans. Korean Inst. Electr. Eng. 58, 1615–1623 (2009)Google Scholar
  76. 76.
    Hidalgo, D., Castillo, O., Melin, P.: Type-1 and type-2 fuzzy inference systems as integration methods in modular neural networks for multimodal biometry and its optimization with genetic algorithms. Inf. Sci. 179, 2123–2145 (2009)CrossRefGoogle Scholar
  77. 77.
    Lopez, M., Melin, P., Castillo, O.: Optimization of response integration with fuzzy logic in ensemble neural networks using genetic algorithms. Stud. Comput. Intell. 154, 129–150 (2008)CrossRefGoogle Scholar
  78. 78.
    Ozkan, I., Türksen, I.B.: Entropy assessment for type-2 fuzziness. In: Proceedings of the IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1111–1115 (2004)Google Scholar
  79. 79.
    Mitchell, H.B.: Pattern recognition using type-II fuzzy sets. Inf. Sci. 170, 409–418 (2005)CrossRefGoogle Scholar
  80. 80.
    Madasu, V.K., Hanmandlu, M., Vasikarla, S.: A novel approach for fuzzy edge detection using type II fuzzy sets. In: Proceedings of SPIE—The International Society for Optical Engineering, vol. 7075, 2008 (art. no. 70750I)Google Scholar
  81. 81.
    Tizhoosh, H.R.: Image thresholding using type II fuzzy sets. Pattern Recognit. 38, 2363–2372 (2005)CrossRefzbMATHGoogle Scholar
  82. 82.
    Fazel Zarandi, M.H., Gamasaee, R.: Type-2 fuzzy hybrid expert system for prediction of tardiness in scheduling of steel continuous casting process. Soft. Comput. 16, 1287–1302 (2012)CrossRefGoogle Scholar
  83. 83.
    Karnik, N.N., Mendel, J.M.: Applications of type-2 fuzzy logic systems to forecasting of time-series. Inf. Sci. 120, 89–111 (1999)CrossRefzbMATHGoogle Scholar
  84. 84.
    Fazel Zarandi, M.H., Gamasaee, R., Turksen, I.B.: A type-2 fuzzy expert system based on a hybrid inference method for steel industry. Int. J. Adv. Manuf. Technol. 71, 857–885 (2014)CrossRefGoogle Scholar
  85. 85.
    Gaxiola, F., Melin, P., Valdez, F., Castillo, O.: Generalized type-2 fuzzy weight adjustment for backpropagation neural networks in time series prediction. Inf. Sci. 325, 159–174 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  86. 86.
    Pramanik, S., Jana, D.K., Mondal, S.K., Maiti, M.: A fixed-charge transportation problem in two-stage supply chain network in Gaussian type-2 fuzzy environments. Inf. Sci. 325, 190–214 (2015)Google Scholar
  87. 87.
    Fazel Zarandi, M.H., Gamasaee, R.: A type-2 fuzzy system model for reducing bullwhip effects in supply chains and its application in steel manufacturing. Sci. Iranica 20, 879–899 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • M. H. Fazel Zarandi
    • 2
    • 1
    Email author
  • R. Gamasaee
    • 1
  • O. Castillo
    • 3
  1. 1.Department of Industrial EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.Knowledge Intelligent Systems LaboratoryUniversity of TorontoTorontoCanada
  3. 3.Division of Graduate StudiesTijuana Institute of TechnologyTomas Aquino TijuanaMexico

Personalised recommendations