Mathematics of Intuitionistic Fuzzy Sets

  • Krassimir AtanassovEmail author
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 341)


Short firsthand remarks on the history and theory of Intuitionistic Fuzzy Sets (IFSs) are given. Influences of other areas of mathematics for development of the IFSs theory are discussed. On the basis of results in IFSs theory, some ideas for development of other mathematical areas are offered.


Intuitionistic fuzzy set Algebra Analysis Artificial intelligence Geometry Number theory Topology 



This paper has been partially supported by the Bulgarian National Science Fund under the Grant Ref. No. DFNI-I-02-5 “InterCriteria Analysis: A New Approach to Decision Making”. The author is thankful to Evgeniy Marinov, Peter Vassilev and Vassia Atanassova for their valuable comments.


  1. 1.
    Atanassov, K.: Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia, June 1983 (Deposed in Central Sci.—Techn. Library of Bulg. Acad. of Sci. 1697/84) (in Bulgaria)Google Scholar
  2. 2.
    Atanassov, K., Stoeva S.: Intuitionistic fuzzy sets. In: Proceedings of polich symposium on interval & fuzzy mathematics, pp. 23–26, Poznan, (1983)Google Scholar
  3. 3.
    Zadeh, L.: Fuzzy sets. Inf. Cont. 8, 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kaufmann, A.: Introduction a la Theorie des Sour-ensembles Flous. Masson, Paris (1977)zbMATHGoogle Scholar
  5. 5.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)zbMATHGoogle Scholar
  6. 6.
    Buhaescu, T.: Some observations on intuitionistic fuzzy relations. Itinerant Seminar on Functional Equations, pp. 111–118, Approximation and Convexity, Cluj-Napoca (1989)Google Scholar
  7. 7.
    Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  8. 8.
    Atanassov, K.: 25 years of intuitionistic fuzzy sets or the most interesting results and the most important mistakes of mine. Advances in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics, vol. I, pp. 1–35, Foundations, Academic Publishing House EXIT, Warszawa (2008)Google Scholar
  9. 9.
    Atanassov, K.: On some intuitionistic fuzzy negations. Notes Intuitionistic Fuzzy Sets 11(6), 13–20 (2005)Google Scholar
  10. 10.
    Atanassov, K.: On the temporal intuitionistic fuzzy sets. In: Proceedings of the Ninth International Conference IPMU 2002, vol. III, pp. 1833–1837, Annecy, France, 1–5 July (2002)Google Scholar
  11. 11.
    Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey (1995)zbMATHGoogle Scholar
  12. 12.
    Atanassov, K.: Intuitionistic fuzzy sets. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  13. 13.
    Antonov, I.: On a new geometrical interpretation of the intuitionistic fuzzy sets. Notes Intuitionistic Fuzzy Sets 1(1), 29–31 (1995).
  14. 14.
    Danchev, S.: A new geometrical interpretation of some concepts in the intuitionistic fuzzy logics. Notes Intuitionistic Fuzzy Sets 1(2), 116–118 (1995)Google Scholar
  15. 15.
    Yang, Y., Chiclana, F.: Intuitionistic fuzzy sets: spherical representation and distances. Int. J. Intell. Syst. 24, 399–420 (2009)Google Scholar
  16. 16.
    Szmidt, E.: Applications of intuitionistic fuzzy sets in decision making. D.Sc. Dissertation, Technical University, Sofia (2000)Google Scholar
  17. 17.
    Szmidt, E., Kacprzyk, J.: Similarity of intuitionistic fuzzy sets and the Jaccard coefficient. In: Proceedings of Tenth International Conference IPMU’2004, vol. 2, 1405–1412, Perugia, 4–9 July 2004Google Scholar
  18. 18.
    Szmidt, E., Kacprzyk, J.: New measures of entropy for intuitionistic fuzzy sets. Notes Intuitionistic Fuzzy Sets 11(2), 12–20 (2005).
  19. 19.
    Atanassova, V.: Representation of fuzzy and intuitionistic fuzzy data by Radar charts. Notes on Intuitionistic Fuzzy Sets 16(1), 21–26 (2010).
  20. 20.
    Feys, R.: Modal Logics. Gauthier, Paris (1965)zbMATHGoogle Scholar
  21. 21.
    Atanassov, K.: Temporal intuitionistic fuzzy sets. Comptes Rendus de l’Academie bulgare des Sciences, Tome 44(7), 5–7 (1991)Google Scholar
  22. 22.
    Atanassov, K.: On the temporal intuitionistic fuzzy sets. In: Proceedings of the ninth international conference IPMU 2002, vol. III, pp. 1833–1837, Annecy, France, 1–5 July 2002Google Scholar
  23. 23.
    Atanassov, K.: Temporal intuitionistic fuzzy sets (review and new results). In: Proceedings of the Thirty Second Spring of the Union of Bulgaria, pp. 79–88, Mathematicians, Sunny Beach, 5–8 Apr 2003Google Scholar
  24. 24.
    Atanassov, K.: A short remark on intuitionistic fuzzy operators X a,b,c,d,e,f and x a,b,c,d,e,f. Notes Intuitionistic Fuzzy Sets 19(1), 54–56 (2013)
  25. 25.
    Dencheva, K.: Extension of intuitionistic fuzzy modal operators ⊞ and ⌧. In: Proceedings of the Second International IEEE Symposium: Intelligent Systems, vol. 3, pp. 21–22, Varna 22–24 June 2004Google Scholar
  26. 26.
    Atanassov K., Çuvalc oğlu, G., Atanassova, V.: A new modal operator over intuitionistic fuzzy sets. Notes Intuitionistic Fuzzy Sets 20(5), 1–8 (2014).
  27. 27.
    Çuvalcioğlu, G.: Some properties of E α,β operator. Adv. Stud. Contemp. Math. 14(2), 305–310 (2007)Google Scholar
  28. 28.
    Çuvalcioğlu, G.: On the diagram of one type modal operators on intuitionistic fuzzy sets: last expanding with Z α,β ωθ. Iran. J. Fuzzy Syst 10(1), 89–106 (2013)Google Scholar
  29. 29.
    Çuvalcioğlu, G.: The extension of modal operators’ diagram with last operators. Notes Intuitionistic Fuzzy Sets 19(3), 56–61 (2013).
  30. 30.
    Atanassov, K.: On four intuitionistic fuzzy topological operators. Mathware Soft. Comput. 8, 65–70 (2001)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Atanassov, K.: On two topological operators over intuitionistic fuzzy sets. Issues Intuitionistic Fuzzy Sets Generalized Nets 8, 1–7 (2010)Google Scholar
  32. 32.
    Atanassov, K., Vassilev, P., Tsvetkov, R.: Intuitionistic fuzzy sets, measures and integrals. In: Drinov, M. (ed.) Academic Publishing House, Sofia (2013)Google Scholar
  33. 33.
    Atanassov, K.: Cantor’s norms for intuitionistic fuzzy sets. Issues Intuitionistic Fuzzy Sets Generalized Nets 8, 36–39 (2010)Google Scholar
  34. 34.
    Asparoukhov, O., Atanassov K.: Intuitionistic fuzzy interpretation of confidential intervals of criteria for decision making. In: Lakov, D. (ed.) Proceedings of the First Workshop on Fuzzy Based Expert Systems, pp. 56-58, Sofia, 28–30 SeptGoogle Scholar
  35. 35.
    Koshelev, M., Kreinovich, V., Rachamreddy, B., Yasemis, H., Atanassov, K.: Fundamental justification of intuitionistic fuzzy logic and interval-valued fuzzy methods. Notes Intuitionistic Fuzzy Sets 4(2), 42–46 (1998).
  36. 36.
    Kreinovich, V., Mukaidono, M., Atanassov, K.: From fuzzy values to intuitionistic fuzzy values, to intuitionistic fuzzy intervals etc.: can we get an arbitrary ordering? Notes Intuitionistic Fuzzy Sets 5(3), 11–18 (1999).
  37. 37.
    Kreinovich, V., Nguyen, H., Wu, B, Atanassov, K.: Fuzzy justification of heuristic methods in inverse problems and in numerical computations, with applications to detection of business cycles from fuzzy and intuitionistic fuzzy data. Notes Intuitionistic Fuzzy Sets 4(2), 47–56 (1998).
  38. 38.
    Atanassov, K.: Remark on an application of the intuitionistic fuzzy sets in number theory. Adv. Stud. Contemp. Math. 5(1), 49–55 (2002)Google Scholar
  39. 39.
    Atanassov, K.: Intuitionistic fuzzy logics as tools for evaluation of data mining processes. Knowl-Based Syst. 80, 122–130 (2015)Google Scholar
  40. 40.
    InterCriteria Research Portal.: Accessed 1 Aug 2015

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Bioinformatics and Mathematical ModellingInstitute of Biophysics and Biomedical Engineering—Bulgarian Academy of SciencesSofiaBulgaria
  2. 2.Intelligent Systems Laboratory, Professor Asen Zlatarov UniversityBourgasBulgaria

Personalised recommendations