Advertisement

Applications of Fuzzy Mathematical Programming Approaches in Supply Chain Planning Problems

  • Mohammad Javad Naderi
  • Mir Saman Pishvaee
  • Seyed Ali TorabiEmail author
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 341)

Abstract

Supply chain planning includes numerous decision problems over strategic (i.e. long-term), tactical (i.e. mid-term) and operational (i.e. short-term) planning horizons in a supply chain. As most of supply chain planning problems deal with decision making in real world while configuring future situations, relevant data should be predicted and described for multiple time periods in the future. Such prediction and description involve imprecision and vagueness due to errors and absence of sharp boundaries in the subjective data and/or insufficient or unreliable objective data. If the uncertainty in supply chain planning problems is to be neglected by the decision maker, the plausible performance of supply chain in future conditions will be in doubt. This is why considerable body of the recent literature account for uncertainty through applying different uncertainty programming approaches with respect to the nature of uncertainty. This chapter aims to provide useful and updated information about different sources and types of uncertainty in supply chain planning problems and the strategies used to confront with uncertainty in such problems. A hyper methodological framework is proposed to cope with uncertainty in supply chain planning problems. Also, among the different uncertainty programming approaches, various fuzzy mathematical programming methods extended in the recent literature are introduced and a number of them are elaborated. Finally, a useful case study is illustrated to present the practicality of fuzzy programming methods in the area of supply chain planning.

Keywords

Supply chain planning Uncertainty Fuzzy mathematical programming Possibilistic programming Flexible programming Robust fuzzy programming 

References

  1. 1.
    Amid, A., Ghodsypour, S.H., O’Brien, C.: Fuzzy multi-objective linear model for supplier selection in a supply chain. Int. J. Prod. Econ. 104(2), 394–407 (2006)CrossRefGoogle Scholar
  2. 2.
    Buckley, J.J.: Possibilistic linear programming with triangular fuzzy numbers. Fuzzy Sets Syst. 26(1), 135–138 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cadenas, J.M., Verdegay, J.L.: Using fuzzy numbers in linear programming. IEEE Trans. Syst. Man Cybern. Part B-Cybern. 27, 1016–1022 (1997)CrossRefGoogle Scholar
  4. 4.
    Cardoso, S.R., Barbosa-Póvoa, A.P.F.D., Relvas, S.: Design and planning of supply chains with integration of reverse logistics activities under demand uncertainty. Eur. J. Oper. Res. 226(3), 436–451 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chakraborty, D.: Redefining chance-constrained programming in fuzzy environment. Fuzzy Sets Syst. 125(3), 327–333 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chakraborty, D., Rao, K.R., Tiwani, R.N.: Interactive decision making in mixed fuzzy stochastic environment. Oper. Res. 31, 89–107 (1994)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Chanas, S.: The use of parametric programming in fuzzy linear programming. Fuzzy Sets Syst. 11(1), 229–241 (1983)zbMATHGoogle Scholar
  8. 8.
    Chen, C.L., Wang, B.W., Lee, W.C.: The optimal profit distribution problem in a multi-echelon supply chain network: a fuzzy optimization approach. In: Proceedings of Knowledge Based Intelligent Information and Engineering Systems, Pt 1, 2773, pp. 1289–1295. Springer (2003)Google Scholar
  9. 9.
    Christopher, M., Peck, H.: Building the resilient supply chain. Int. J. Logistics Manage. 15(2), 1–14 (2004)CrossRefGoogle Scholar
  10. 10.
    Davis, T.: Effective supply chain management. Sloan Manage. Rev. 34, 35–36 (1993)Google Scholar
  11. 11.
    Díaz-Madroñero, M., Peidro, D., Mula, J.: A fuzzy optimization approach for procurement transport operational planning in an automobile supply chain. Appl. Math. Model. 38(23), 5705–5725 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dubois, D., Prade, H.: Decision evaluation methods under uncertainty and imprecision. In: Combining Fuzzy Imprecision with Probabilistic Uncertainty in Decision Making, pp. 48–65. Springer, Berlin, Heidelberg (1988)Google Scholar
  13. 13.
    Dubois, D.: Linear programming with fuzzy data. In: Bezdek, J.C. (ed.) The Analysis of Fuzzy Information—Vol. 3: Applications in Engineering and Science, pp. 241–263. CRC Press, Boca Raton, FL (1987)Google Scholar
  14. 14.
    Dubois, D., Prade, H.: Linear programming with fuzzy data. Anal. Fuzzy Inf. 3, 241–263 (1987)MathSciNetGoogle Scholar
  15. 15.
    Dubois, D., Prade, H.: The mean value of a fuzzy number. Fuzzy Sets Syst. 24(3), 279–300 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dubois, D., Prade, H.: Possibility Theory. Plenum, New York (1988)CrossRefzbMATHGoogle Scholar
  17. 17.
    Fallah, H., Eskandari, H., Pishvaee, M.S.: Competitive closed-loop supply chain network design under uncertainty. J. Manuf. Syst. (2015)Google Scholar
  18. 18.
    Fuller, R.: On a spatial type of fuzzy linear programming. In: Colloquia Mathematica Societatis Janos Bolyai, vol. 49 (1986)Google Scholar
  19. 19.
    Galbraith, J.R.: Designing Complex Organizations, pp. 187–203. Addison-Wesley Longman Publishing Co., Inc. (1973)Google Scholar
  20. 20.
    Giannoccaro, I., Pontrandolfo, P., Scozzi, B.: A fuzzy echelon approach for inventory management in supply chains. Eur. J. Oper. Res. 149(1), 185–196 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gosling, J., Purvis, L., Naim, M.M.: Supply chain flexibility as a determinant of supplier selection. Int. J. Prod. Econ. 128(1), 11–21 (2010)CrossRefGoogle Scholar
  22. 22.
    Gupta, A., Maranas, C.D.: Managing demand uncertainty in supply chain planning. Comput. Chem. Eng. 27(8), 1219–1227 (2003)CrossRefGoogle Scholar
  23. 23.
    Haimes, Y.Y.: Risk modeling, assessment, and management, vol. 40. Wiley (2005)Google Scholar
  24. 24.
    Heilpern, S.: The expected value of a fuzzy number. Fuzzy Sets Syst. 47, 81–86 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hirota, K.: Concepts of probabilistic sets. Fuzzy Event J. Math. Anal. Appl. 23, 421–427 (1981)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Ho, C.J.: Evaluating the impact of operating environments on MRP system nervousness. Int. J. Prod. Res. 27(7), 1115–1135 (1989)CrossRefGoogle Scholar
  27. 27.
    Hsu, H.M., Wang, W.P.: Possibilistic programming in production planning of assemble-to-order environments. Fuzzy Sets Syst. 119(1), 59–70 (2001)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Jiménez, M.: Ranking fuzzy numbers through the comparison of its expected intervals. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 4(04), 379–388 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Jiménez, M., Arenas, M., Bilbao, A., Rodrı, M.V.: Linear programming with fuzzy parameters: an interactive method resolution. Eur. J. Oper. Res. 177(3), 1599–1609 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Katagiri, H., Ishii, H.: Linear programming problem with fuzzy random constraint. Mathematica japonicae 52(1), 123–129 (2000)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Kleindorfer, P.R., Saad, G.H.: Managing disruption risks in supply chains. Prod. Oper. Manage. 14(1), 53–68 (2005)CrossRefGoogle Scholar
  32. 32.
    Klibi, W., Martel, A., Guitouni, A.: The design of robust value-creating supply chain networks: a critical review. Eur. J. Oper. Res. 203(2), 283–293 (2010)CrossRefzbMATHGoogle Scholar
  33. 33.
    Kumar, M., Vrat, P., Shankar, R.: A fuzzy goal programming approach for vendor selection problem in a supply chain. Comput. Ind. Eng. 46(1), 69–85 (2004)CrossRefGoogle Scholar
  34. 34.
    Kumar, M., Vrat, P., Shankar, R.: A fuzzy programming approach for vendor selection problem in a supply chain. Int. J. Prod. Econ. 101(2), 273–285 (2006)CrossRefGoogle Scholar
  35. 35.
    Kwakernaak, H.: Fuzzy random variables—I definitions and theorems. Inf. Sci. 15(1), 1–29 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Kwakernaak, H.: Fuzzy random variables—II algorithms and examples for the discrete case. Inf. Sci. 17(3), 253–278 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Lai, Y.J., Hwang, C.L.: A new approach to some possibilistic linear programming problems. Fuzzy Sets Syst. 49(2), 121–133 (1992)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Lai, Y.J., Hwang, C.L.: Fuzzy Mathematical Programming, pp. 74–186. Springer, Berlin, Heidelberg (1992)Google Scholar
  39. 39.
    Liang, T.F.: Distribution planning decisions using interactive fuzzy multi-objective linear programming. Fuzzy Sets Syst. 157(10), 1303–1316 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Liang, T.F.: Integrating production-transportation planning decision with fuzzy multiple goals in supply chains. Int. J. Prod. Res. 46(6), 1477–1494 (2008)CrossRefzbMATHGoogle Scholar
  41. 41.
    Liu, S.T., Kao, C.: Solving fuzzy transportation problems based on extension principle. Eur. J. Oper. Res. 153(3), 661–674 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Liu, B., Liu, B.: Theory and Practice of Uncertain Programming, pp. 78–81. Physica-verlag, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  43. 43.
    Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value models. Fuzzy Syst. IEEE Trans. 10(4), 445–450 (2002) CrossRefGoogle Scholar
  44. 44.
    Luhandjula, M. K.: Linear programming under randomness and fuzziness. Fuzzy Sets Syst. 10(1), 45-55 (1983)Google Scholar
  45. 45.
    Luhandjula, M.K.: Fuzzy optimization: an appraisal. Fuzzy Sets Syst. 30(3), 257–282 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Luhandjula, M.K.: Optimisation under hybrid uncertainty. Fuzzy Sets Syst. 146(2), 187–203 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Luhandjula, M. K.: Fuzzy stochastic linear programming: survey and future research directions. Eur. J. Oper. Res. 174(3), 1353–1367 (2006)Google Scholar
  48. 48.
    Luhandjula, M.K., Djungu, A.O., Kasoro, N.M.: On fuzzy probabilistic linear programming. Ann. Fac. Sci. Univ. Kinshasa 3, 45–60 (1997)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Mason-Jones, R., Towill, D.R.: Shrinking the supply chain uncertainty circle. IOM Control 24(7), 17–22 (1998)Google Scholar
  50. 50.
    Mousazadeh, M., Torabi, S.A., Zahiri, B.: A robust possibilistic programming approach for pharmaceutical supply chain network design. Comput. Chem. Eng. 82, 115–128 (2015)CrossRefGoogle Scholar
  51. 51.
    Mohammadi, M., Torabi, S. A., & Tavakkoli-Moghaddam, R.: Sustainable hub location under mixed uncertainty. Transportat. Res. E- Log. 62, 89–115 (2014)Google Scholar
  52. 52.
    Mula, J., Poler, R., Garcia-Sabater, J.P.: Capacity and material requirement planning modelling by comparing deterministic and fuzzy models. Int. J. Prod. Res. 46(20), 5589–5606. 74–97 (2008)Google Scholar
  53. 53.
    Mula, J., Poler, R., Garcia, J.P.: MRP with flexible constraints: a fuzzy mathematical programming approach. Fuzzy Sets Syst. 157, 74–97 (2006)  MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Mula, J., Peidro, D., Poler, R.: The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand. Int. J. Prod. Econ. 128(1), 136–143 (2010)CrossRefzbMATHGoogle Scholar
  55. 55.
    Negi, D.S.: Fuzzy Analysis and Optimization. UMI (1996)Google Scholar
  56. 56.
    Paksoy, T., Pehlivan, N.Y., Özceylan, E.: Application of fuzzy optimization to a supply chain network design: a case study of an edible vegetable oils manufacturer. Appl. Math. Model. 36(6), 2762–2776 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Peidro, D., Mula, J., Poler, R., Verdegay, J.L.: Fuzzy optimization for supply chain planning under supply, demand and process uncertainties. Fuzzy Sets Syst. 160(18), 2640–2657 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Peidro, D., Mula, J., Poler, R., Lario, F.C.: Quantitative models for supply chain planning under uncertainty: a review. Int. J. Adv. Manuf. Technol. 43(3–4), 400–420 (2009)CrossRefGoogle Scholar
  59. 59.
    Pishvaee, M.S., Khalaf, M.F.: Novel robust fuzzy mathematical programming methods. Appl. Math. Model. 40(1), 407-418 (2016)Google Scholar
  60. 60.
    Pishvaee, M.S., Torabi, S.A.: A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy Sets Syst. 161(20), 2668–2683 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Pishvaee, M.S., Jolai, F., Razmi, J.: A stochastic optimization model for integrated forward/reverse logistics network design. J. Manuf. Syst. 28(4), 107–114 (2009)CrossRefGoogle Scholar
  62. 62.
    Pishvaee, M.S., Rabbani, M., Torabi, S.A.: A robust optimization approach to closed-loop supply chain network design under uncertainty. Appl. Math. Model. 35(2), 637–649 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Pishvaee, M.S., Razmi, J., Torabi, S.A.: Robust possibilistic programming for socially responsible supply chain network design: a new approach. Fuzzy Sets Syst. 206, 1–20 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Pishvaee, M.S., Torabi, S.A., Razmi, J.: Credibility-based fuzzy mathematical programming model for green logistics design under uncertainty. Comput. Ind. Eng. 62(2), 624–632 (2012)CrossRefGoogle Scholar
  65. 65.
    Pishvaee, M.S., Razmi, J., Torabi, S.A.: An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: a case study of medical needle and syringe supply chain. Transp. Res. Part E Logistics Transp. Rev. 67, 14–38 (2014)CrossRefGoogle Scholar
  66. 66.
    Prater, E., Biehl, M., Smith, M.A.: International supply chain agility-tradeoffs between flexibility and uncertainty. Int. J. Oper. Prod. Manage. 21(5/6), 823–839 (2001)CrossRefGoogle Scholar
  67. 67.
    Qin, Z., Ji, X.: Logistics network design for product recovery in fuzzy environment. Eur. J. Oper. Res. 202(2), 479–490 (2010)CrossRefzbMATHGoogle Scholar
  68. 68.
    Ramík, J.: Inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy Sets Syst. 16(2), 123–138 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Ritchie, B., Brindley, C.: Supply chain risk management and performance: a guiding framework for future development. Int. J. Oper. Prod. Manage. 27(3), 303–322 (2007)CrossRefzbMATHGoogle Scholar
  70. 70.
    Rommelfanger, H., Hanuscheck, R., Wolf, J.: Linear programming with fuzzy objectives. Fuzzy Sets Syst. 29(1), 31–48 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Rosenhead, J., Elton, M., Gupta, S.K.: Robustness and optimality as criteria for strategic decisions. Oper. Res. Q, 413–431 (1972)Google Scholar
  72. 72.
    Sakawa, M., Nishizaki, I., Uemura, Y.: Fuzzy programming and profit and cost allocation for a production and transportation problem. Eur. J. Oper. Res. 131(1), 1–15 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Sawhney, R.: Interplay between uncertainty and flexibility across the value-chain: towards a transformation model of manufacturing flexibility. J. Oper. Manage. 24(5), 476–493 (2006)CrossRefGoogle Scholar
  74. 74.
    Selim, H., Ozkarahan, I.: A supply chain distribution network design model: an interactive fuzzy goal programming-based solution approach. Int. J. Adv. Manuf. Technol. 36, 401–418 (2008)CrossRefGoogle Scholar
  75. 75.
    Selim, H., Araz, C., Ozkarahan, I.: Collaborative production–distribution planning in supply chain: a fuzzy goal programming approach. Transp. Res. Part E Logistics Transp. Rev. 44(3), 396–419 (2008)CrossRefGoogle Scholar
  76. 76.
    Simangunsong, E., Hendry, L.C., Stevenson, M.: Supply-chain uncertainty: a review and theoretical foundation for future research. Int. J. Prod. Res. 50(16), 4493–4523 (2012)CrossRefGoogle Scholar
  77. 77.
    Stewart, T.J.: Dealing with uncertainties in MCDA. In: Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 445–466. Springer, New York (2005)Google Scholar
  78. 78.
    Tanaka, H., Ichihashi, H., Asai, K.: A value of information in FLP problems via sensitivity analysis. Fuzzy Sets Syst. 18(2), 119–129  (1986)Google Scholar
  79. 79.
    Tang, C.S.: Perspectives in supply chain risk management. Int. J. Prod. Econ. 103(2), 451–488 (2006)CrossRefGoogle Scholar
  80. 80.
    Torabi, S.A., Baghersad, M., Mansouri, S.A.: Resilient supplier selection and order lot-sizing under operational and disruption risks. Transp. Res. Part E Logistics Transp. Rev. 79, 22–48 (2015)CrossRefGoogle Scholar
  81. 81.
    Torabi, S.A., Hassini, E.: An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets Syst. 159(2), 193–214 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Torabi, S.A., Namdar, J., Hatefi, S.M.: An enhanced possibilistic programming approach for reliable closed-loop supply chain network design under operational and disruption risks. Int. J. Prod. Res.  54(5), 1358–1387 (2016)Google Scholar
  83. 83.
    Torabi, S.A., Ebadian, M., Tanha, R.: Fuzzy hierarchical production planning (with a case study). Fuzzy Sets Syst. 161, 1511–1529 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    Vafa Arani H., Torabi S.A.: Integrated Material-Financial Supply Chain Master Planning Under Mixed Uncertainty. Working paper, (2015)Google Scholar
  85. 85.
    Van der Vaart, J.T., De Vries, J., Wijngaard, J.: Complexity and uncertainty of materials procurement in assembly situations. Int. J. Prod. Econ. 46, 137–152 (1996)CrossRefGoogle Scholar
  86. 86.
    Van der Vorst, J.G., Beulens, A.J.: Identifying sources of uncertainty to generate supply chain redesign strategies. Int. J. Phys. Distrib. Logistics Manage. 32(6), 409–430 (2002)CrossRefGoogle Scholar
  87. 87.
    Verdegay, J.L.: Fuzzy mathematical programming. Fuzzy Inf. Decis. Process. 231, 237 (1982)zbMATHGoogle Scholar
  88. 88.
    Wang, R.C., Liang, T.F.: Applying possibilistic linear programming to aggregate production planning. Int. J. Prod. Econ. 98(3), 328–341 (2005)CrossRefGoogle Scholar
  89. 89.
    Werners, B.: Interactive multiple objective programming subject to flexible constraints. Eur. J. Oper. Res. 31(3), 342–349 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  90. 90.
    World Health Organization (WHO): Safe Management of Bio-medical Sharps Waste in India: A Report on Alternative Treatment and Non-burn Disposal Practices. WHO Regional Office for South-East Asia, New Delhi (2005)Google Scholar
  91. 91.
    Xu, J., & Zhou, X.: Approximation based fuzzy multi-objective models with expected objectives and chance constraints: Application to earth-rock work allocation. Information Sciences, 238, 75–95 (2013)Google Scholar
  92. 92.
    Yager, R.R.: A procedure for ordering fuzzy subsets of the unit interval. Inf. Sci. 24(2), 143–161 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  93. 93.
    Yager, R.: Ranking fuzzy subsets over the unit interval. In: 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes, No. 17, pp. 1435–1437 (1978)Google Scholar
  94. 94.
    Zadeh, L. A.: Probability measures of fuzzy events. J. Math Anal. Appl. 23(2), 421–427 (1968)Google Scholar
  95. 95.
    Zahiri, B., Tavakkoli-Moghaddam, R., Pishvaee, M.S.: A robust possibilistic programming approach to multi-period location-allocation of organ transplant centers under uncertainty. Comput. Ind. Eng. 74, 139–148 (2014)CrossRefGoogle Scholar
  96. 96.
    Zimmermann, H.J.: Description and optimization of fuzzy systems. Int. J. Gen. Syst. 2(1), 209–215 (1975)CrossRefzbMATHGoogle Scholar
  97. 97.
    Zimmermann, H.J.: Applications of fuzzy set theory to mathematical programming. Inf. Sci. 36(1), 29–58 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  98. 98.
    Zimmermann, H.J.: Fuzzy Set theory—And Its Applications, 3rd edn. Kluwer Academic Publisher (1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mohammad Javad Naderi
    • 1
  • Mir Saman Pishvaee
    • 1
  • Seyed Ali Torabi
    • 2
    Email author
  1. 1.School of Industrial EngineeringIran University of Science and TechnologyTehranIran
  2. 2.School of Industrial Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations