Skip to main content

Health Service Network Design Under Epistemic Uncertainty

  • Chapter
  • First Online:
  • 1100 Accesses

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 341))

Abstract

If a health system wants to achieve its strategic goal known as “reducing health inequalities”, making health services available and accessible to all people is an essential prerequisite. Health service network design (HSND) is known as one of the most critical strategic decisions that affects performance of health systems to the great extent. Important decisions such as location of health service providers (i.e. clinics, hospitals, etc.), allocation of patient zones to health service providers and optimal designing of patients flow via the network are some of the main strategic and tactical decisions that should be made when configuring a health service network. On the other hand, coping with uncertainty in data is an inseparable part of strategic and tactical problems. More specifically, the complex structure of health service networks alongside the volatile environment surrounding the health systems would impose a higher degree of uncertainty to the decision makers and health network designers. Among different methods to cope with uncertainty, possibilistic programming approaches are well-applied methods that can handle epistemic uncertainty in parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. WHO: The World Health Report 2000: Health Systems: Improving Performance. WHO (2000)

    Google Scholar 

  2. Porter, M.E., Teisberg, E.O.: Redefining Health Care: Creating Value-Based Competition on Results. Harvard Business Press (2006)

    Google Scholar 

  3. Brandeau, M.L., Sainfort, F., Pierskalla, W.P.: Operations Research and Health Care: A Handbook of Methods and Applications, vol. 70. Springer Science & Business Media (2004)

    Google Scholar 

  4. De Vries, G., Bertrand, J., Vissers, J.: Design requirements for health care production control systems. Prod. Plann. Control 10(6), 559–569 (1999)

    Article  Google Scholar 

  5. Brailsford, S., Vissers, J.: OR in healthcare: a European perspective. Eur. J. Oper. Res. 212(2), 223–234 (2011)

    Article  MathSciNet  Google Scholar 

  6. Syam, S.S., Côté, M.J.: A comprehensive location-allocation method for specialized healthcare services. Oper. Res. Health Care (2012)

    Google Scholar 

  7. Shariff, S.R., Moin, N.H., Omar, M.: Location allocation modeling for healthcare facility planning in Malaysia. Comput. Ind. Eng. 62(4), 1000–1010 (2012)

    Article  Google Scholar 

  8. Syam, S.S., Côté, M.J.: A location–allocation model for service providers with application to not-for-profit health care organizations. Omega 38(3), 157–166 (2010)

    Article  Google Scholar 

  9. Shishebori, D., Babadi, A.Y.: Robust and reliable medical services network design under uncertain environment and system disruptions. Transp. Res. Part E Logistics Transp. Rev. 77, 268–288 (2015)

    Article  Google Scholar 

  10. Lamiri, M., et al.: A stochastic model for operating room planning with elective and emergency demand for surgery. Eur. J. Oper. Res. 185(3), 1026–1037 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chien, C.-F., Tseng, F.-P., Chen, C.-H.: An evolutionary approach to rehabilitation patient scheduling: a case study. Eur. J. Oper. Res. 189(3), 1234–1253 (2008)

    Article  MATH  Google Scholar 

  12. Burke, E.K., et al.: A scatter search methodology for the nurse rostering problem. J. Oper. Res. Soc. 61(11), 1667–1679 (2010)

    Article  Google Scholar 

  13. Rais, A., Viana, A.: Operations research in healthcare: a survey. Int. Trans. Oper. Res. 18(1), 1–31 (2011)

    Article  MathSciNet  Google Scholar 

  14. Hulshof, P.J., et al.: Taxonomic classification of planning decisions in health care: a structured review of the state of the art in OR/MS. Health syst. 1(2), 129–175 (2012)

    Article  Google Scholar 

  15. Xing, Y., et al.: Operations research (OR) in service industries: a comprehensive review. Syst. Res. Behav. Sci. 30(3), 300–353 (2013)

    Article  Google Scholar 

  16. WHO: World Health Report 2008. Primary Health Care, Now More than Ever. WHO, Geneva (2008)

    Google Scholar 

  17. Mousazadeh, M., Torabi, S., Zahiri, B.: A robust possibilistic programming approach for pharmaceutical supply chain network design. Comput. Chem. Eng. (2015)

    Google Scholar 

  18. Zahiri, B., et al.: Blood collection management: a robust possibilistic programming approach. Appl. Math. Model. (2015)

    Google Scholar 

  19. Zahiri, B., Tavakkoli-Moghaddam, R., Pishvaee, M.S.: A robust possibilistic programming approach to multi-period location–allocation of organ transplant centers under uncertainty. Comput. Ind. Eng. 74, 139–148 (2014)

    Article  Google Scholar 

  20. Pishvaee, M.S., Farahani, R.Z., Dullaert, W.: A memetic algorithm for bi-objective integrated forward/reverse logistics network design. Comput. Oper. Res. 37(6), 1100–1112 (2010)

    Article  MATH  Google Scholar 

  21. Melkote, S., Daskin, M.S.: An integrated model of facility location and transportation network design. Transp. Res. Part A Policy Pract. 35(6), 515–538 (2001)

    Article  MATH  Google Scholar 

  22. Miranda, P.A., Garrido, R.A.: Incorporating inventory control decisions into a strategic distribution network design model with stochastic demand. Transp. Res. Part E Logistics Transp. Rev. 40(3), 183–207 (2004)

    Article  Google Scholar 

  23. Amiri, A.: Designing a distribution network in a supply chain system: formulation and efficient solution procedure. Eur. J. Oper. Res. 171(2), 567–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin, L., Gen, M., Wang, X.: Integrated multistage logistics network design by using hybrid evolutionary algorithm. Comput. Ind. Eng. 56(3), 854–873 (2009)

    Article  Google Scholar 

  25. Pishvaee, M., Torabi, S., Razmi, J.: Credibility-based fuzzy mathematical programming model for green logistics design under uncertainty. Comput. Ind. Eng. 62, 624–632 (2012)

    Article  Google Scholar 

  26. Marmot, M., et al.: Closing the gap in a generation: health equity through action on the social determinants of health. Lancet 372(9650), 1661–1669 (2008)

    Article  Google Scholar 

  27. Saltman, R., Rico, A., Boerma, W.: Primary Care in the Driver’s Seat: Organizational Reform in European Primary Care. McGraw-Hill International (2006)

    Google Scholar 

  28. Nutting, P.A.: Population-based family practice: the next challenge of primary care. J. Fam. Pract. 24(1), 83 (1987)

    Google Scholar 

  29. Criel, B., De Brouwere, V., Dugas, S.: Integration of vertical programmes in multi-function health services. ITG Press Antwerp, Belgium (1997)

    Google Scholar 

  30. Dökmeci, V.F.: A quantitative model to plan regional health facility systems. Manage. Sci. 24(4), 411–419 (1977)

    Article  MATH  Google Scholar 

  31. Schweikhart, S.B., Smith-Daniels, V.L.: Location and service mix decisions for a managed health care network. Socio-Econ. Plan. Sci. 27(4), 289–302 (1993)

    Article  Google Scholar 

  32. Galvao, R.D., Espejo, L.G.A., Boffey, B.: A hierarchical model for the location of perinatal facilities in the municipality of Rio de Janeiro. Eur. J. Oper. Res. 138(3), 495–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Marianov, V., Serra, D.: Location–allocation of multiple-server service centers with constrained queues or waiting times. Ann. Oper. Res. 111(1–4), 35–50 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Marianov, V., Serra, D.: Hierarchical location–allocation models for congested systems. Eur. J. Oper. Res. 135(1), 195–208 (2001)

    Article  MATH  Google Scholar 

  35. Verter, V., Lapierre, S.D.: Location of preventive health care facilities. Ann. Oper. Res. 110(1–4), 123–132 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Galvão, R.D., et al.: Load balancing and capacity constraints in a hierarchical location model. Eur. J. Oper. Res. 172(2), 631–646 (2006)

    Article  MATH  Google Scholar 

  37. Yasenovskiy, V., Hodgson, J.: Hierarchical location-allocation with spatial choice interaction modeling. Ann. Assoc. Am. Geogr. 97(3), 496–511 (2007)

    Article  Google Scholar 

  38. Griffin, P.M., Scherrer, C.R., Swann, J.L.: Optimization of community health center locations and service offerings with statistical need estimation. IIE Trans. 40(9), 880–892 (2008)

    Article  Google Scholar 

  39. Ndiaye, M., Alfares, H.: Modeling health care facility location for moving population groups. Comput. Oper. Res. 35(7), 2154–2161 (2008)

    Article  MATH  Google Scholar 

  40. Smith, H.K., et al.: Planning sustainable community health schemes in rural areas of developing countries. Eur. J. Oper. Res. 193(3), 768–777 (2009)

    Article  MATH  Google Scholar 

  41. Zhang, Y., Berman, O., Verter, V.: Incorporating congestion in preventive healthcare facility network design. Eur. J. Oper. Res. 198(3), 922–935 (2009)

    Article  MATH  Google Scholar 

  42. Mahar, S., Bretthauer, K.M., Salzarulo, P.A.: Locating specialized service capacity in a multi-hospital network. Eur. J. Oper. Res. 212(3), 596–605 (2011)

    Article  Google Scholar 

  43. Fo, A.R.A.V., da Silva Mota, I.: Optimization models in the location of healthcare facilities: a real case in Brazil. J. Appl. Oper. Res. 4(1), 37–50 (2012)

    Google Scholar 

  44. Mestre, A.M., Oliveira, M.D., Barbosa-Póvoa, A.: Organizing hospitals into networks: a hierarchical and multiservice model to define location, supply and referrals in planned hospital systems. OR Spectrum 34(2), 319–348 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, Y., Berman, O., Verter, V.: The impact of client choice on preventive healthcare facility network design. OR Spectrum 34(2), 349–370 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Benneyan, J.C., et al.: Specialty care single and multi-period location–allocation models within the Veterans Health Administration. Socio-Econ. Plann. Sci. 46(2), 136–148 (2012)

    Article  Google Scholar 

  47. Song, B.D., Ko, Y.D., Hwang, H.: The design of capacitated facility networks for long term care service. Comput. Industr. Eng. (2015)

    Google Scholar 

  48. Naithani, S., Gulliford, M., Morgan, M.: Patients’ perceptions and experiences of ‘continuity of care’ in diabetes. Health Expect. 9(2), 118–129 (2006)

    Article  Google Scholar 

  49. Beach, M.C., et al.: Are physicians’ attitudes of respect accurately perceived by patients and associated with more positive communication behaviors? Patient Educ. Couns. 62(3), 347–354 (2006)

    Article  MathSciNet  Google Scholar 

  50. Mula, J., Poler, R., Garcia, J.: MRP with flexible constraints: a fuzzy mathematical programming approach. Fuzzy Sets Syst. 157(1), 74–97 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mousazadeh, M., Torabi, S.A., Pishvaee M.S.: Green and reverse logistics management under fuzziness. In: Supply Chain Management Under Fuzziness, pp. 607–637. Springer (2014)

    Google Scholar 

  52. Inuiguchi, M., Ramı́k, J.: Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets Syst. 111(1), 3–28 (2000)

    Google Scholar 

  53. Liu, B., Iwamura, K.: Chance constrained programming with fuzzy parameters. Fuzzy Sets Syst. 94(2), 227–237 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  54. Liu, B., Liu, Y.-K.: Expected value of fuzzy variable and fuzzy expected value models. Fuzzy Syst. IEEE Trans. 10(4), 445–450 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ali Torabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mousazadeh, M., Torabi, S.A., Pishvaee, M.S. (2016). Health Service Network Design Under Epistemic Uncertainty. In: Kahraman, C., Kaymak, U., Yazici, A. (eds) Fuzzy Logic in Its 50th Year. Studies in Fuzziness and Soft Computing, vol 341. Springer, Cham. https://doi.org/10.1007/978-3-319-31093-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31093-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31091-6

  • Online ISBN: 978-3-319-31093-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics