Advertisement

Solving a Multiobjective Truck and Trailer Routing Problem with Fuzzy Constraints

  • Isis TorresEmail author
  • Alejandro Rosete
  • Carlos Cruz
  • José L. Verdegay
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 341)

Abstract

The Truck and Trailer Routing Problem uses trucks pulling trailers as a distinctive feature of the Vehicle Routing Problem. Recently, this problem has been treated considering the capacity constraints as fuzzy. This situation means that the decision maker admits the violation of these constraints according to a value of tolerance. This relaxation can generate a set of solutions with very low costs but its non-fulfillment grade of the capacity constraints can be high and vice versa. This fuzzy variant is generalized in this work from a multiobjective approach by incorporating an objective to minimize the violation of constraints. We present and discuss the computational experiments carried out to solve the multiobjective Truck and Trailer Routing Problem with fuzzy constraint using benchmark instances with sizes ranging from 50 to 199 customers.

Keywords

Truck and trailer routing problem Multiobjective Fuzzy sets Optimization 

Notes

Acknowledgments

This work was supported in part by the projects P11-TIC-8001 from the Andalusian Government (including FEDER funds), TIN2014-55024-P from Spanish Ministry of Economy and Competitiveness, and PYR 2014-9 from the GENIL, University of Granada.

References

  1. 1.
    Baykasoglu, A., Owen, S., Gindy, N.: A taboo search based approach to find the Pareto optimal set in multiple objective optimization. J. Eng. Optim. 31(6), 731–748 (1999)CrossRefGoogle Scholar
  2. 2.
    Brito, J., Moreno, J.A., Verdegay, J.L.: Transport route planning models based on fuzzy approach. Iran. J. Fuzzy Syst. 9(1), 141–158 (2012)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cadenas, J., Verdegay, J.L.: Using fuzzy numbers in linear programming. IEEE Trans. Syst. Man Cybern. 27(6), 1017–1022 (1997)CrossRefGoogle Scholar
  4. 4.
    Chao, I.-M.: A tabu search method for the truck and trailer routing problem. Comput. Oper. Res. 29(1), 33–51 (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, Y., Zou, X., Xie, W.: Convergence of multi-objective evolutionary algorithms to a uniformly distributed representation of the pareto front. Inf. Sci. 181(16), 3336–3355 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Christofides, N., Mingozzi, A., Thot, P.: The vehicle routing problem. In: Christofides, N., Mingozzi, A., Thot, P. (eds.) Combinatorial Optimization, pp. 315–338. Wiley, Chichester (1979)Google Scholar
  7. 7.
    Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-objective Problems, 1st edn. Kluwer Academic Publishers, New York (2002)Google Scholar
  8. 8.
    Delgado, M., Verdegay, J.L., Vila, M.A.: A general model for fuzzy linear programming. Fuzzy Sets Syst. 29(1), 21–29 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Derigs, U., Pullmann, M., Vogel, U.: Truck and trailer routing-problems, heuristics and computational experience. Comput. Oper. Res. 40(2), 536–546 (2013)CrossRefGoogle Scholar
  10. 10.
    Díaz, R. Estudio de la capacidad del algoritmo escalador de colinas estocástico para enfrentar problemas multiobjetivo. Master's thesis, Department Artificial Intelligence and Infrastructure of Informatic Systems, Instituto Superior Politécnico José Antonio Echeverría (2001)Google Scholar
  11. 11.
    Drexl, M.: Branch and price and heuristic column generation for the generalized truck and trailer routing problem. J. Quant. Methods Econ. Bus. Adm. 12(1), 5–38 (2011)Google Scholar
  12. 12.
    Fajardo, J., Rosete, A.: Algoritmo multigenerador de soluciones para la competencia y colaboración de generadores metaheuristicos. Revista Internacional de Investigación de Operaciones (RIIO) 1(1), 57–63 (2011)Google Scholar
  13. 13.
    Gerdessen, J.C.: Vehicle routing problem with trailers. Eur. J. Oper. Res. 93(1), 135–147 (1996)CrossRefzbMATHGoogle Scholar
  14. 14.
    Haidine, A., Lehnert, R.: Multi-case multi-objective simulated annealing (mc mosa): new approach to adapt simulated annealing to multi-objective optimization. Int. J. Inf. Technol. 4(3), 197–205 (2008)Google Scholar
  15. 15.
    Lin, S.-W., Yu, V.F., Chou, S.-Y.: Solving the truck and trailer routing problem based on a simulated annealing heuristic. Comput. Oper. Res. 36(5), 1638–1692 (2009)Google Scholar
  16. 16.
    Lin, S.-W., Yu, V.F., Chou, S.-Y.: A note on a the truck and trailer routing problem. Expert Syst. Appl. 37(1), 899–903 (2010)Google Scholar
  17. 17.
    Lin, S.-W., Yu, V.F., Chou, S.-Y.: A simulated annealing heuristic for the truck and trailer routing problem with time windows. Expert Syst. Appl. 38(12), 15244–15252 (2011)Google Scholar
  18. 18.
    Scheuerer, S.: A tabu search heuristic for the truck and trailer routing problem. Comput. Oper. Res. 33(4), 894–909 (2006)CrossRefzbMATHGoogle Scholar
  19. 19.
    Semet, F.: A two-phase algorithm for the partial accessibility constrained vehicle routing problem. Ann. Oper. Res. 61(1), 45–65 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Semet, F., Taillard, E.: Solving real-life vehicle routing problems efficiently using tabu search. Ann. Oper. Res. 41(4), 469–488 (1993)CrossRefzbMATHGoogle Scholar
  21. 21.
    Torres, I., Rosete, A., Cruz, C., Verdegay, J.L.: Fuzzy constraints in the truck and trailer routing problem. In: Proceedings of Fourth International Workshop on Knowledge Discovery, Knowledge Management and Decision Support, pp. 71–78 (2013)Google Scholar
  22. 22.
    Torres, I., Verdegay, J.L., Cruz, C., Rosete, A.: Models and solutions for truck and trailer routing problems: an overview. Int. J. Appl. Metaheuristic Comput. 4(2), 31–43 (2013)CrossRefGoogle Scholar
  23. 23.
    Torres, I., Cruz, C., Verdegay, J.L.: Solving the truck and trailer routing problem with fuzzy constraints. Int. J. Comput. Intell. Syst. 8(4), 713–724 (2015)CrossRefGoogle Scholar
  24. 24.
    Ulungu, E.L., Teghem, J., Fortemps, P.H., Tuyttens, D.: MOSA method: a tool for solving multiobjective combinatorial optimization problems. J. Multicriteria Decis. Anal. 8(4), 221–236 (1999)CrossRefzbMATHGoogle Scholar
  25. 25.
    Verdegay, J.L.: Fuzzy mathematical programming. In: Gupta, M.M., Sanchez, E. (eds.) Fuzzy Information and Decision Processes, pp. 231–237 (1982)Google Scholar
  26. 26.
    Villegas, J.G., Prins, C., Prodhon, C., Medaglia, A.L., Velasco, N.: GRASP/VND and multi-start evolutionary local search for the single truck and trailer routing problem with satellite depots. Eng. Appl. Artif. Intell. 23(5), 780–794 (2010)CrossRefGoogle Scholar
  27. 27.
    Villegas, J.G., Prins, C., Prodhon, C., Medaglia, A.L., Velasco, N.: A GRASP with evolutionary path relinking for the truck and trailer routing problem. Comput. Oper. Res. 38(9), 1319–1334 (2011)CrossRefzbMATHGoogle Scholar
  28. 28.
    Villegas, J.G., Prins, C., Prodhon, C., Medaglia, A.L., Velasco, N.: A matheuristic for the truck and trailer routing problem. Eur. J. Oper. Res. 230(2), 231–244 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Isis Torres
    • 1
    Email author
  • Alejandro Rosete
    • 1
  • Carlos Cruz
    • 2
  • José L. Verdegay
    • 2
  1. 1.Facultad de Ingeniería InformáticaInstituto Superior Politécnico José Antonio EcheverríaLa HabanaCuba
  2. 2.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain

Personalised recommendations