Advertisement

The Emergence of Fuzzy Sets: A Historical Perspective

  • Didier DuboisEmail author
  • Henri Prade
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 341)

Abstract

This paper tries to suggest some reasons why fuzzy set theory came to life 50 years ago by pointing out the existence of streams of thought in the first half of the XXth century in logic, linguistics and philosophy, that paved the way to the idea of moving away from the Boolean framework, through the proposal of many-valued logics and the study of the vagueness phenomenon in natural languages. The founding paper in fuzzy set theory can be viewed as the crystallization of such ideas inside the engineering arena. Then we stress the point that this publication in 1965 was followed by several other seminal papers in the subsequent 15 years, regarding classification, ordering and similarity, systems science, decision-making, uncertainty management and approximate reasoning. The continued effort by Zadeh to apply fuzzy sets to the basic notions of a number of disciplines in computer and information sciences proved crucial in the diffusion of this concept from mathematical sciences to industrial applications.

Keywords

Fuzzy sets Many-valued logics Vagueness Possibility theory Approximate reasoning 

References

  1. 1.
    Baudrit, C., Guyonnet, D., Dubois, D.: Joint propagation and exploitation of probabilistic and possibilistic information in risk assessment. IEEE Trans. Fuzzy Syst. 14, 593–608 (2006)Google Scholar
  2. 2.
    Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Studies in Fuzziness and Soft Computing, vol. 221. Springer (2007)Google Scholar
  3. 3.
    Bellman, R.E., Kalaba, R., Zadeh, L.A.: Abstraction and pattern classification. J. Math. Anal. Appl. 13, 1–7 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bellman, R.E., Zadeh, L.A.: Decision making in a fuzzy environment. Manage. Sci. 17, B141–B164 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bezdek, J., Keller, J., Krishnapuram, R., Pal, N.: Fuzzy Models for Pattern Recognition and Image processing. Kluwer (1999)Google Scholar
  6. 6.
    Bodenhofer, U., De Baets, B., Fodor, J.C.: A compendium of fuzzy weak orders: Representations and constructions. Fuzzy Sets Syst. 158(8), 811–829 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Black, M., Vagueness, M.: Phil. Sci. 4, 427–455 (1937) (Reprinted in Language and Philosophy: Studies in Method. Cornell University Press, pp. 23–58. Ithaca, London, 1949. Also in Int. J. Gen. Syst. 17, 107–128, 1990)Google Scholar
  8. 8.
    Bosc, P., Pivert, O.: Modeling and querying uncertain relational databases: a survey of approaches based on the possible world semantics. Int. J. Uncertainty, Fuzziness Knowl. Based Syst. 18(5), 565–603 (2010)Google Scholar
  9. 9.
    Ciucci, D., Dubois, D.: A map of dependencies among three-valued logics. Inf. Sci. 250, 162–177 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Couso, I., Dubois, D., Sanchez, L.: Random Sets and Random Fuzzy Sets as Ill-Perceived Random Variables. Springer, Springer Briefs in Computational Intelligence, 2014Google Scholar
  11. 11.
    De Baets, B., Dubois, D., Hüllermeier, E.: Special issue celebrating the 50th anniversary of fuzzy sets. Fuzzy Sets Syst 281, 1–308 (2015)Google Scholar
  12. 12.
    De Finetti, B.: La logique de la probabilité, Actes Congrés Int. de Philos. Scient., Paris (1935) (Hermann et Cie Editions. Paris, pp. IV1–IV9, 1936)Google Scholar
  13. 13.
    Dubois, D.: Have fuzzy sets anything to do with vagueness? (with discussion) In: Cintula, P., Fermüller, C. (eds.) Understanding Vagueness-Logical, Philosophical and Linguistic Perspectives, vol. 36 of Studies in Logic. College Publications, pp. 317–346 (2012)Google Scholar
  14. 14.
    Dubois, D., Esteva, F., Godo, L., Prade, H.: Fuzzy-set based logics—an history-oriented presentation of their main developments. In: Gabbay, D.M., Woods, J. (Eds.) Handbook of The History of Logic. The Many Valued and Nonmonotonic Turn in Logic, vol. 8, Elsevier, pp. 325–449 (2007)Google Scholar
  15. 15.
    Dubois, D., Fargier, H., Fortemps, P.: Fuzzy scheduling: modelling flexible constraints vs. coping with incomplete knowledge. Eur. J. Oper. Res. 147(2), 231–252 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dubois, D., Fargier, H., Prade, H.: Possibility theory in constraint satisfaction problems: handling priority, preference and uncertainty. Appl. Intell. 6, 287–309 (1996)CrossRefzbMATHGoogle Scholar
  17. 17.
    Dubois, D., Ostasiewicz, W., Prade, H.: Fuzzy sets: history and basic notions. In: Dubois, D. Prade, H. (eds.) Fundamentals of Fuzzy Sets. The Handbooks of Fuzzy Sets Series, Kluwer, pp. 21–124 (2000)Google Scholar
  18. 18.
    Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press, New York (1988)Google Scholar
  19. 19.
    Dubois, D., Prade, H.: The three semantics of fuzzy sets. Fuzzy Sets Syst. 90, 141–150Google Scholar
  20. 20.
    Dubois, D., Prade, H.: Gradual elements in a fuzzy set. Soft. Comput. 12, 165–175 (2008)CrossRefzbMATHGoogle Scholar
  21. 21.
    Dubois, D., Prade, H.: Gradualness, uncertainty and bipolarity: making sense of fuzzy sets. Fuzzy Sets Syst. 192, 3–24 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dubois, D., Prade, H.: Possibilistic logic—an overview. In: Siekmann, J., Gabbay, D.M., Woods, J. (eds.) Handbook of the History of Logic. Computational Logic, vol. 9, pp. 283–342 (2014)Google Scholar
  23. 23.
    Dubois, D., Prade, H.: Possibility theory and its applications: where do we stand? In: Kacprzyk, J., Pedrycz, W. (eds.) Handbook of Computational Intelligence, pp. 31–60. Springer (2015)Google Scholar
  24. 24.
    Fine, K.: Vagueness, truth and logic. Synthese 30, 265–300 (1975)CrossRefzbMATHGoogle Scholar
  25. 25.
    Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publication (1994)Google Scholar
  26. 26.
    Gil, M.A., González-Rodriguez, G., Kruse, R. (eds.) Statistics with imperfect data. Spec. Issue Inf. Sci. 245, 1–3 (2013)Google Scholar
  27. 27.
    Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 8, 145–174 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Gottwald, S.: Fuzzy sets theory: some aspects of the early development, In: Skala, H.J., Termini, S., Trillas, E., (eds.) Aspects of Vagueness, pp. 13–29. D. Reidel (1984)Google Scholar
  29. 29.
    Hájek, P.: Metamathematics of Fuzzy Logic, Trends in Logic, vol. 4. Kluwer, Dordercht (1998)CrossRefzbMATHGoogle Scholar
  30. 30.
    Hoehle, U., Rodabaugh, S.E. (eds.) Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series, vol. 3. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  31. 31.
    Inuiguchi, M., Ramik, J.: Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets Syst. 111(1), 3–28 (2000)Google Scholar
  32. 32.
    Inuiguchi, M., Watada, J., Dubois, D. (eds.) Special issue on fuzzy modeling for optimisation and decision support. Fuzzy Sets Syst. 274 (2015)Google Scholar
  33. 33.
    Kaplan, A.: Definition and specification of meanings. J. Phil. 43, 281–288 (1946)CrossRefGoogle Scholar
  34. 34.
    Kaplan, A., Schott, H.F.: A calculus for empirical classes. Methods III, 165–188 (1951)Google Scholar
  35. 35.
    Kleene, S.C.: Introduction to Metamathematics. North Holland Pub. Co., Amsterdam (1952)zbMATHGoogle Scholar
  36. 36.
    Lodwick, W.A., Dubois, D.: Interval linear systems as a necessary step in fuzzy linear systems. Fuzzy Sets Syst. 281, 227–251 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Lodwick, W.A., Oberguggenberger, M. (eds.) Differential equations over fuzzy spaces—theory, applications, and algorithms. Spec Issue Fuzzy Sets Syst. 230, 1–162 (2013)Google Scholar
  38. 38.
    Łukasiewicz, J.: Philosophical remarks on many-valued systems of propositional logic (1930) (Reprinted in Selected works. In Borkowski (ed.) Studies in Logic and the Foundations of Mathematics, pp. 153–179. North-Holland, Amsterdam, 1970)Google Scholar
  39. 39.
    Mauris, G.: Possibility distributions: a unified representation of usual direct-probability-based parameter estimation methods. Int. J. Approx. Reasoning 52(9), 1232–1242 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Menger, K.: Ensembles flous et fonctions aleatoires. Comptes Rendus de lAcadmie des Sciences de Paris 232, 2001–2003 (1951)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Meseguer, P., Rossi, F., Schiex, T.: Soft Constraints, Chapter 9 in Foundations of Artificial Intelligence, vol. 2, Elsevier, pp. 281–328 (2006)Google Scholar
  42. 42.
    Mundici, D.: Bookmaking Over Infinite-Valued Events. Int. J. Approximate Reasoning 43(3), 223–240 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Muzzioli, S., Ruggieri, A., De Baets, B.: A comparison of fuzzy regression methods for the estimation of the implied volatility smile function. Fuzzy Sets Syst. 266, 131–143 (2015)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Novák, V.: Are fuzzy sets a reasonable tool for modeling vague phenomena? Fuzzy Sets Syst. 156(3), 341–348 (2005)Google Scholar
  45. 45.
    Ostasiewicz, W.: Pioneers of fuzziness. Busefal 46, 4–15 (1991)Google Scholar
  46. 46.
    Ostasiewicz, W.: Half a century of fuzzy sets. Supplement to Kybernetika 28:17–20, 1992 (Proc. of the Inter. Symp. on Fuzzy Approach to Reasoning and Decision Making, Bechyne, Czechoslovakia, June 25-29, 1990)Google Scholar
  47. 47.
    Peirce, C.S.: Collected papers of Charles sanders Peirce. In: Hartshorne, C., Weiss, P. (eds.) Harvard University Press. Cambridge, MA (1931)Google Scholar
  48. 48.
    Ruspini, E.H.: A new approach to clustering. Inform. Control 15, 22–32 (1969)CrossRefzbMATHGoogle Scholar
  49. 49.
    Russell, B., Vagueness, B.: Austr. J. Philos. 1, 84–92 (1923)Google Scholar
  50. 50.
    Seising, R.: Not, or, and,—not an end and not no end! The “Enric-Trillas-path” in fuzzy logic. In: Seising, R., Argüelles Méndez, L. (eds.) Accuracy and fuzziness. A Life in Science and Politics. A festschrift book to Enric Trillas Ruiz, pp. 1–59, Springer (2015)Google Scholar
  51. 51.
    Shackle, G.L.S.: Expectation in Economics, 2nd edn. Cambridge University Press, UK (1949)Google Scholar
  52. 52.
    Shackle, G.L.S.: Decision, Order and Time in Human Affairs, 2nd edn. Cambridge University Press, UK (1961)Google Scholar
  53. 53.
    Smith, P., Keefe, R.: Vagueness: A Reader. MIT Press, Cambridge, MA (1997)Google Scholar
  54. 54.
    Tanaka, H., Okuda, T., Asai, K.: On fuzzy-mathematical programming. J. Cybern. 3(4), 37–46 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Weyl, H.: Mathematic and logic. Am. Math. Mon. 53, 2–13 (1946)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Williamson, T.: Vagueness. Routledge, London (1994)Google Scholar
  57. 57.
    Wittgenstein, L.: Philosophical Investigations. Macmillan, New York (1953)zbMATHGoogle Scholar
  58. 58.
    Zadeh, L.A.: Thinking machines. A new field in electrical engineering. Columbia Eng. Q. 3, 12–13, 30–31 (1950)Google Scholar
  59. 59.
    Zadeh, L.A.: From circuit theory to system theory. Proc. IRE 50, 856–865 (1962)Google Scholar
  60. 60.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Zadeh, L.A.: Fuzzy sets and systems. In: Fox, J. (Ed.) Systems Theory, pp .29-37. Polytechnic Press, Brooklyn, NY (1966) (Proceedings of Symposium on System Theory. New York, 20–22 Apr 1965, (reprinted in Int. J. General Syst., 17, 129–138, 1990)Google Scholar
  62. 62.
    Zadeh, L.A.: Fuzzy algorithms. Inf. Control 12, 94–102 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Zadeh, L.A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 23, 421–427 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Zadeh, L.A.: Biological applications of the theory of fuzzy sets and systems. In: Kilmer, W.L., Proctor, L.D., Brown, L., et al. (eds.) Biocybernetics of the Central Nervous System (with a discussion by Boston, pp. 199–206 (discussion pp. 207–212) (1969)Google Scholar
  65. 65.
    Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3, 177–200 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Zadeh, L.A.: Quantitative fuzzy semantics. Inf. Sci. 3, 159–176 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Zadeh, L.A.: Toward a theory of fuzzy systems. In: Kalman, R.E., De Claris, N. (eds.) Aspects of Network and System Theory, pp. 469–490. Holt, Rinehart and Winston, New York, (1971) (originally NASA Contractor Report 1432, Sept. 1969)Google Scholar
  68. 68.
    Zadeh, L.A.: A rationale for fuzzy control. J. of Dyn. Syst. Measur. Control Trans. ASME, 3–4 (1972) (March issue)Google Scholar
  69. 69.
    Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 3(1), 28–44 (1973)Google Scholar
  70. 70.
    Zadeh, L.A.: Fuzzy logic and approximate reasoning. Synthese 30, 407–428 (1975)CrossRefzbMATHGoogle Scholar
  71. 71.
    Zadeh, L.A.: Calculus of fuzzy restrictions. In: Zadeh, L.A., Fu, K.S., Tanaka, K., Shimura, M. (eds.) Fuzzy sets and Their Applications to Cognitive and Decision Processes. Proceedings of U.S.-Japan Seminar on Fuzzy Sets and Their Applications. Berkeley, 1–4 July, 1974 (Academic Press, pp. 1–39, 1975)Google Scholar
  72. 72.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci., Part I, 8(3), 199–249; Part II, 8(4), 301–357; Part III, 9(1), 43–80 (1975)Google Scholar
  73. 73.
    Zadeh, L.A.: PRUF—a meaning representation language for natural languages. Int. J. Man Mach. Stud. 10, 395–460 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Zadeh, L.A.: A theory of approximate reasoning. In: Hayes, J.E., Mitchie, D., Mikulich, L.I. (eds.) Machine Intelligence, vol. 9, pp. 149–194 (1979)Google Scholar
  76. 76.
    Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, M.M., Ragade, R.K., Yager, R.R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North-Holland (1979)Google Scholar
  77. 77.
    Zadeh, L.A.: Possibility theory and soft data analysis. In: Cobb, L., Thrall, R. (eds.) Mathematical Frontiers of Social and Policy Sciences, pp. 69–129. Westview Press, Boulder Co (1982)Google Scholar
  78. 78.
    Zadeh, L.A.: Precisiation of meaning via translation into PRUF. In: Vaina, L., Hintikka, J. (eds.) Cognitive Constraints on Communication, pp. 373–402. Reidel, Dordrecht (1984)Google Scholar
  79. 79.
    Zadeh, L.A.: Syllogistic reasoning in fuzzy logic and its application to usuality and reasoning with dispositions. IEEE Trans. Syst. Man Cybern. 15(6), 754–763 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    Zadeh, L.A.: Knowledge representation in fuzzy logic. IEEE Trans. Knowl. Data Eng. 1(1), 89–100 (1989)CrossRefGoogle Scholar
  81. 81.
    Zadeh, L.A.: The calculus of fuzzy if-then rules. AI Expert 7(3), 23–27 (1992)MathSciNetGoogle Scholar
  82. 82.
    Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4(2), 103–111 (1996)MathSciNetCrossRefGoogle Scholar
  83. 83.
    Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90, 111–128 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    Zadeh, L.A.: Generalized theory of uncertainty (GTU)—principal concepts and ideas. Comput. Stat. Data Anal. 51, 15–46 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Zadeh, L.A.: Fuzzy logic—a personal perspective. Fuzzy Sets Syst. 281, 4–20 (2015)MathSciNetCrossRefGoogle Scholar
  86. 86.
    Zimmermann, H.-J.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1, 45–55 (1978)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.IRIT-CNRSUniversité Paul SabatierToulouse Cedex 09France

Personalised recommendations