Skip to main content

Pyro-Electrohydrodynamic Printing and Multi Jets Dispenser

  • Chapter
  • First Online:
  • 367 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter a new concept of droplet generation based on the pyroelectrohydrodynamic effect is described. The method is analyzed for the direct drawing and dispensing of small droplets from liquid drops or film reservoirs. For the smallest ink droplets, printing resolution down to 300 nm (corresponding to attolitre volumes) was achieved. This technique does not require electrodes, high-voltage circuit connections or special capillary nozzles. In fact, the electric fields are generated pyroelectrically using functionalized substrates of Lithium Niobate (LN) for transferring liquids between two substrates and manipulate the droplets three dimensionally. 

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Casner, J.-P. Delville, Phys. Rev. Lett. 90, 144503 (2003)

    Article  Google Scholar 

  2. B. de Heij et al., Anal. Bioanal. Chem. 378, 119–122 (2004)

    Article  Google Scholar 

  3. T. Ondarcuhu et al., Eur. Phys. J. Spec. Top. 166, 15–20 (2009)

    Article  Google Scholar 

  4. L.T. Cherney, J. Fluid Mech. 378, 167–196 (1999)

    Article  Google Scholar 

  5. R.T. Collins et al., Nat. Phys. 4, 149–154 (2008)

    Article  Google Scholar 

  6. G.I. Taylor, Proc. R. Soc. Lond. A 280, 383–397 (1964)

    Article  Google Scholar 

  7. J.-U. Park et al., Nature Mater. 6, 782–789 (2007)

    Article  Google Scholar 

  8. J.-U. Park et al., Nano Lett. 8, 4210–4216 (2008)

    Article  Google Scholar 

  9. H.F. Poon, D.A. Saville, I.A. Aksay, Appl. Phys. Lett. 93, 133114 (2008)

    Article  Google Scholar 

  10. C.-H. Chen, D.A. Saville, I.A. Aksay, Appl. Phys. Lett. 89, 124103 (2006)

    Article  Google Scholar 

  11. A.U. Chen, O.A. Basaran, Phys. Fluids 14, L1–L4 (2002)

    Article  Google Scholar 

  12. L. Miccio et al., Opt. Lett. 34, 1075–1077 (2009)

    Article  Google Scholar 

  13. R. Ahmed, T.B. Jones, J. Micromech. Microeng. 17, 1052–1058 (2007)

    Article  Google Scholar 

  14. Ferraro et al., Nat. Nanotech. 5, 429–435 (2010)

    Article  Google Scholar 

  15. B. Rosenblum, P. Bräunlich, J.P. Carrico, Appl. Phys. Lett. 25 (1974)

    Google Scholar 

  16. A.M. Gañán-Calvo, Phys. Rev. Lett. 98 (2007)

    Google Scholar 

  17. N. Maeda, J.N. Israelachvili, M.M. Kohonen, PNAS 100 (2003)

    Google Scholar 

  18. G.M. Whitesides, Nature 442, 368 (2006)

    Article  Google Scholar 

  19. J.M. Köhler, T. Henkel, Appl. Microbiol. Biotechnol. 69, 113 (2005)

    Article  Google Scholar 

  20. A. Huebner et al., Lab Chip 8, 1244 (2008)

    Article  Google Scholar 

  21. D.A. Sessoms et al., Phys. Rev. E 80, 016317 (2009)

    Article  Google Scholar 

  22. P. Matteini et al., J. Mater. Chem. B 1, 1096 (2013)

    Article  Google Scholar 

  23. F. Ratto et al., Proc. SPIE 7910, 5954853 (2011)

    Google Scholar 

  24. P.K. Notz, O.A. Basaran, J. Colloid Interface Sci. 213, 218 (1999)

    Article  Google Scholar 

  25. R. Mercatelli et al., Appl. Phys. Lett. 99, 131113 (2011)

    Article  Google Scholar 

  26. A.V. Butenko, J. Appl. Phys. 108, 044106 (2010)

    Article  Google Scholar 

  27. M.G. Lippmann, Ann. Chim. Phys. 5, 494 (1875)

    Google Scholar 

  28. E. Colgate, H.J. Matsumoto, Vac. Sci. Technol. A 8, 3625 (1990)

    Article  Google Scholar 

  29. F. Mugele, J.-C. Baret, J. Phys.: Condens. Matter 17, R705 (2005)

    Google Scholar 

  30. F. Beunis et al., Appl. Phys. Lett. 91, 182911 (2007)

    Article  Google Scholar 

  31. H. Moon et al., J. Appl. Phys. 92, 4080 (2002)

    Article  Google Scholar 

  32. V. Taly, B.T. Kelly, A.D. Griffiths, ChemBioChem 8, 263–272 (2007)

    Article  Google Scholar 

  33. A.D. Griffiths, D.S. Tawfik, Trends Biotechnol. 24, 9 (2006)

    Article  Google Scholar 

  34. O. Basaran, AIChE J. 48, 9 (2002)

    Article  Google Scholar 

  35. H. Song, D.L. Chen, F. Ismagilov, Angew. Chem. Int. Ed. 45, 7336–7356 (2006)

    Google Scholar 

  36. P. Calvert, Chem. Mater. 13, 3299–3305 (2001)

    Article  Google Scholar 

  37. M.E. Kuil et al., Marijnissen. Biotechnol. J. 1, 969–975 (2006)

    Article  Google Scholar 

  38. W. Deng et al., J. Aerosol Sci. 40, 907–918 (2009)

    Article  Google Scholar 

  39. R. Bocanegra, J. Aerosol Sci. 36, 1387–1399 (2005)

    Article  Google Scholar 

  40. S.B.Q. Tran et al., J. Electrost. 68, 138–144 (2010)

    Article  Google Scholar 

  41. R.T. Kelly et al., Anal. Chem. 80, 5660–5665 (2008)

    Article  Google Scholar 

  42. L.D. Landau et al., Electrodynamics of Continuous Media (Pergamon, Oxford, 1984)

    Google Scholar 

  43. E. Scaffer et al., Nature 403, 874–877 (2000)

    Article  Google Scholar 

  44. N.E. Voicu, S. Harkema, U. Steiner, Adv. Funct. Mater. 16, 926 (2006)

    Article  Google Scholar 

  45. H.F. Poon et al., Appl. Phys. Lett. 93, 133114 (2008)

    Article  Google Scholar 

  46. E. Elele, Y. Shen, B. Khusid, Appl. Phys. Lett. 97, 233501 (2010)

    Article  Google Scholar 

  47. H. Ottevaere et al., J. Opt. A: Pure Appl. Opt. 4, S22–S28 (2002)

    Article  Google Scholar 

  48. M. He et al., J. Opt. A: Pure Appl. Opt. 6, 94–97 (2004)

    Article  Google Scholar 

  49. C.Y. Chang, S.Y. Yang, J.L. Sheh, Microsyst. Technol. 12, 754–759 (2006)

    Article  Google Scholar 

  50. J. Shi et al., Microfluid. Nanofluid. 9, 313–318 (2010)

    Article  Google Scholar 

  51. J.-H. Zhu, J.-X. Shi, Y. Wang, P.-S. He, Chin. J. Chem. Phys. 19, 443–446 (2006)

    Article  Google Scholar 

  52. A. Schilling, R. Merz, C. Ossmann, H.P. Herzig, Opt. Eng. 9, 2171–2176 (2000)

    Article  Google Scholar 

  53. W. Cheong, L. Yuan, V. Koudriachov, W. Yu, Opt. Express 10, 586–590 (2002)

    Article  Google Scholar 

  54. I.A. Grimaldi, J. Appl. Polym. Sci. 122, 3637–3643 (2011)

    Article  Google Scholar 

  55. F. Villani, Opt. Lett. 35, 3333–3335 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Coppola .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Coppola, S. (2016). Pyro-Electrohydrodynamic Printing and Multi Jets Dispenser. In: Manipulation of Multiphase Materials for Touch-less Nanobiotechnology. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-31059-6_3

Download citation

Publish with us

Policies and ethics