Skip to main content

Hypergeometric Series, Truncated Hypergeometric Series, and Gaussian Hypergeometric Functions

  • Conference paper
  • First Online:

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 3))

Abstract

In this paper, we investigate the relationships among hypergeometric series, truncated hypergeometric series, and Gaussian hypergeometric functions through some families of “hypergeometric” algebraic varieties that are higher dimensional analogues of Legendre curves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The subscript q for a Gaussian hypergeometric function records the size of the corresponding finite field and should not be confused with the subscript for truncated hypergeometric series which records the location of truncation.

  2. 2.

    In a different language, our results correspond to the explicit descriptions of some mixed weight hypergeometric motives arising from exponential sums which are initiated by Katz [24], and are explicitly formulated and implemented by a group of mathematicians including Beukers, Cohen, Rodriguez-Villegas and others (from private communication with H. Cohen and F. Rodriguez-Villegas). Here we can use the explicit algebraic varieties to compute the Galois representations directly. A different algebraic model for the algebraic varieties is given in the following recent preprint [9].

  3. 3.

    When \(p \equiv 3\pmod 4\), \(_{2}F_{1}\left (\begin{array}{*{10}c} \eta _{2},&\eta _{2}\\ & \varepsilon \\ \end{array} \,; -1\right )_{p} = 0\).

  4. 4.

    Comparing both sides, when we pick \(u = -\zeta _{3}\) where ζ 3 be a primitive cubic root, we can derive that the claim of the theorem holds modulo p 3.

References

  1. Ahlgren, S., Ono, K.: A Gaussian hypergeometric series evaluation and Apéry number congruences. J. Reine Angew. Math. 518, 187–212 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  3. Archinard, N.: Hypergeometric abelian varieties. Can. J. Math. 55 (5), 897–932 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atkin, A.O.L., Li, W.-C.W., Long, L.: On Atkin and Swinnerton-Dyer congruence relations. II. Math. Ann. 340 (2), 335–358 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bailey, W.N.: Generalized Hypergeometric Series. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 32, pp. pp. v+108. Stechert-Hafner, Inc., New York (1964)

    Google Scholar 

  6. Barman, R., Kalita, G.: Hypergeometric functions and a family of algebraic curves. Ramanujan J. 28 (2), 175–185 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barman, R., Saikia, N., McCarthy, D.: Summation identities and special values of hypergeometric series in the p-adic setting. J. Number Theory 153, 63–84 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berndt, B.C., Evans, R.J., Williams, K.S.: Gauss and Jacobi Sums. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. Wiley, New York (1998)

    MATH  Google Scholar 

  9. Beukers, F., Cohen, H., Mellit, A.: Finite hypergeometric functions. Mathematics - Number Theory, 11F46, 11T24 (2015). http://adsabs.harvard.edu/abs/2015arXiv150502900B. ArXiv e-prints: 1505.02900. Provided by the SAO/NASA Astrophysics Data System

  10. Chan, K.K., Long, L., Zudilin, V.V.: A supercongruence motivated by the Legendre family of elliptic curves. Mat. Zametki 88 (4), 620–624 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chisholm, S., Deines, A., Long, L., Nebe, G., Swisher, H.: p−adic analogues of Ramanujan type formulas for 1∕π. Mathematics 1 (1), 9–30 (2013)

    Article  MATH  Google Scholar 

  12. Clifford, A.H.: Representations induced in an invariant subgroup. Ann. Math. (2) 38 (3), 533–550 (1937)

    Google Scholar 

  13. Cohen, H.: Number Theory: Volume II. Analytic and Modern Tools. Graduate Texts in Mathematics, vol. 240. Springer, New York (2007)

    Google Scholar 

  14. Coster, M.J., Van Hamme, L.: Supercongruences of Atkin and Swinnerton-Dyer type for Legendre polynomials. J. Number Theory 38 (3), 265–286 (1991)

    Google Scholar 

  15. Deines, A., Fuselier, J.G., Long, L., Swisher, H., Tu, F.T.: Generalized Legendre curves and quaternionic multiplication. J. Number Theory 161, 175–203 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dwork, B.: p-adic cycles. Publ. Math. l’IHÉS. 37 (1), 27–115 (1969)

    Google Scholar 

  17. Frechette, S., Ono, K., Papanikolas, M.: Gaussian hypergeometric functions and traces of Hecke operators. Int. Math. Res. Not. 60, 3233–3262 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fuselier, J.G.: Hypergeometric functions over \(\mathbb{F}_{p}\) and relations to elliptic curves and modular forms. Proc. Am. Math. Soc., 138 (1), 109–123 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fuselier, J.G., McCarthy, D.: Hypergeometric type identities in the p-adic setting and modular forms. Proc. Am. Math. Soc. 144 (4), 1493–1508 (2016). doi:10.1090/proc/12837

    Article  MathSciNet  MATH  Google Scholar 

  20. Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 96. Cambridge University Press, Cambridge (2004) With a foreword by Richard Askey

    Google Scholar 

  21. Greene, J.: Hypergeometric functions over finite fields. Trans. Am. Math. Soc. 301 (1), 77–101 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gross, B.H., Koblitz, N.: Gauss sums and the p-adic y-function. Ann. Math. 109(3), 569–581 (1979). doi:10.2307/1971226

    Article  MathSciNet  MATH  Google Scholar 

  23. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory, 2nd edn. Graduate Texts in Mathematics, vol. 84. Springer, New York (1990)

    Google Scholar 

  24. Katz, N.M.: Exponential Sums and Differential Equations, vol. 124. Princeton University Press, Princeton (1990)

    Book  MATH  Google Scholar 

  25. Kilbourn, T.: An extension of the Apéry number supercongruence. Acta Arith. 123 (4), 335–348 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Koike, M.: Hypergeometric series over finite fields and Apéry numbers. Hiroshima Math. J. 22 (3), 461–467 (1992)

    MathSciNet  MATH  Google Scholar 

  27. Lennon, C.: Gaussian hypergeometric evaluations of traces of Frobenius for elliptic curves. Proc. Am. Math. Soc. 139 (6), 1931–1938 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, W.-C.W., Long, L.: Atkin and Swinnerton-Dyer congruences and noncongruence modular forms. IMS K\(\hat{\text{o}}\) ky\(\hat{\text{u}}\) roku Bessatsu B51, 269–299 (2014). arXiv:1303.6228

    Google Scholar 

  29. Li, W.-C.W., Long, L., Yang, Z.: On Atkin-Swinnerton-Dyer congruence relations. J. Number Theory 113 (1), 117–148 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Long, L.: On Atkin and Swinnerton-Dyer congruence relations. III. J. Number Theory 128 (8), 2413–2429 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Long, L., Ramakrishna, R.: Some supercongruences occurring in truncated hypergeometric series. Adv. Math. 290, 773–808 (2016). doi:10.1016/j.aim.2015.11.043

    Article  MathSciNet  MATH  Google Scholar 

  32. McCarthy, D.: Transformations of well-poised hypergeometric functions over finite fields. Finite Fields Appl. 18 (6), 1133–1147 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. McCarthy, D.: The trace of Frobenius of elliptic curves and the p-adic gamma function. Pac. J. Math. 261 (1), 219–236 (2013)

    Google Scholar 

  34. McCarthy, D., Papanikolas, M.A.: A finite field hypergeometric function associated to eigenvalues of a siegel eigenform. Int. J. Number Theory 11 (8), 2431–2450

    Google Scholar 

  35. Mortenson, E.: A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function. J. Number Theory 99 (1), 139–147 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ono, K.: Values of Gaussian hypergeometric series. Trans. Am. Math. Soc. 350 (3), 1205–1223 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Robert, A.M.: The Gross-Koblitz formula revisited. Rendiconti del Seminario Matematico della Università di Padova 105, 157–170 (2001)

    MathSciNet  MATH  Google Scholar 

  38. Slater, L.J.: Generalized Hypergeometric Functions, pp. xiii+273. Cambridge University Press, Cambridge (1966)

    Google Scholar 

  39. Vega, M.V.: Hypergeometric functions over finite fields and their relations to algebraic curves. Int. J. Number Theory 7 (8), 2171–2195 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Weil, A.: Jacobi sums as “Grössencharaktere”. Trans. Am. Math. Soc. 73, 487–495 (1952)

    MathSciNet  MATH  Google Scholar 

  41. Whipple, F.J.W.: On well-poised series, generalized hypergeometric series having parameters in pairs, each pair with the same sum. Proc. Lond. Math. Soc. s2–24 (1), 247–263 (1926)

    Google Scholar 

  42. Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. Sec., 141 (3), 443–551 (1995) DOI: 10.2307/2118559, http://dx.doi.org/10.2307/2118559

    Article  MathSciNet  MATH  Google Scholar 

  43. Wiles, A.: Modular elliptic curves and Fermats last theorem. Ann. Math. 141(3), 443–551 (1995). doi:10.2307/2118559

    Article  MathSciNet  MATH  Google Scholar 

  44. Zudilin, W.: Ramanujan-type supercongruences. J. Number Theory 129 (8), 1848–1857 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We warmly thank the Banff International Research Station (BIRS) and Women in Numbers 3 BIRS 2014 (14w5009) workshop for the opportunity to initiate this collaboration. Thanks to the National Center for Theoretical Sciences in Taiwan for supporting the travel of Fang-Ting Tu to visit Ling Long. Long was supported by NSF DMS1303292. We are indebted to Wadim Zudilin for his insightful suggestions and sharing his ideas. We also thank Jerome W. Hoffman for his interest and valuable comments; Rupam Barman, Jesús Guillera, and Ravi Ramakrishna for helpful discussions. Further thanks to the referees for their careful readings and helpful comments. We used Magma and Sage for our computations related to this project and Sage Math Cloud to collaborate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Long .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Deines, A., Fuselier, J.G., Long, L., Swisher, H., Tu, FT. (2016). Hypergeometric Series, Truncated Hypergeometric Series, and Gaussian Hypergeometric Functions. In: Eischen, E., Long, L., Pries, R., Stange, K. (eds) Directions in Number Theory. Association for Women in Mathematics Series, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-30976-7_5

Download citation

Publish with us

Policies and ethics