Skip to main content

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 4))

Abstract

We prove various representations and density results for Hardy spaces of holomorphic functions for two classes of bounded domains in \(\mathbb{C}^{n}\), whose boundaries satisfy minimal regularity conditions (namely the classes C 2 and C 1, 1, respectively) together with naturally occurring notions of convexity.

Dedicated to the memory of Cora Sadosky

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Also known as the Szegő projection.

References

  1. P. Ahern, R. Schneider, The boundary behavior of Henkin’s kernel. Pac. J. Math. 66, 9–14 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Ahern, R. Schneider, A smoothing property of the Henkin and Szegő projections. Duke Math. J. 47, 135–143 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Andersson, M. Passare, R. Sigurdsson, Complex Convexity and Analytic Functionals (Birkhäuser, Basel, 2004)

    Book  MATH  Google Scholar 

  4. D.E. Barrett, Irregularity of the Bergman projection on a smooth bounded domain. Ann. Math. 119, 431–436 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. D.E. Barrett, Behavior of the Bergman projection on the Diederich-Fornæworm. Acta Math. 168, 1–10 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Barrett, L. Lanzani, The Leray transform on weighted boundary spaces for convex Reinhardt domains. J. Funct. Anal. 257, 2780–2819 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Bekollé, A. Bonami, Inegalites a poids pour le noyau de Bergman. C. R. Acad. Sci. Paris Ser. A-B 286 (18), A775–A778 (1978)

    MathSciNet  MATH  Google Scholar 

  8. S. Bell, E. Ligocka, A simplification and extension of Fefferman’s theorem on biholomorphic mappings. Invent. Math. 57 (3), 283–289 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Bolt, The Möbius geometry of hypersurfaces. Mich. Math. J. 56 (3), 603–622 (2008)

    Article  MATH  Google Scholar 

  10. A. Bonami, N. Lohoué, Projecteurs de Bergman et Szegő pour une classe de domaines faiblement pseudo- convexes et estimations L p. Compos. Math. 46 (2), 159–226 (1982)

    MATH  Google Scholar 

  11. D. Catlin, Boundary behavior of holomorphic functions on pseudoconvex domains. J. Differ. Geom. 15 (4), 605–625 (1980)

    MathSciNet  MATH  Google Scholar 

  12. P. Charpentier, Y. Dupain, Estimates for the Bergman and Szegő Projections for pseudo-convex domains of finite type with locally diagonalizable Levi forms. Publ. Mat. 50, 413–446 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. S.-C. Chen, M.-C. Shaw, Partial Differential Equations in Several Complex Variables (American Mathematical Society, Providence, 2001)

    MATH  Google Scholar 

  14. M. Christ, A T(b)-theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60/61 (2), 601–628 (1990)

    Google Scholar 

  15. M. Christ, Lectures on Singular Integral Operators.CBMS Regional Conf. Series, vol. 77 (American Mathematical Society, Providence, 1990)

    Google Scholar 

  16. R. Coifman, A. McIntosh, Y. Meyer, L’intègrale de Cauchy dèfinit un opèrateur bornè sur L 2 pour les courbes lipschitziennes. Ann. Math. 116 (2), 367–387 (1982)

    Article  MATH  Google Scholar 

  17. A. Cumenge, Comparaison des projecteurs de Bergman et Szegő et applications. Ark. Mat. 28, 23–47 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. G. David, Opérateurs intégraux singuliers sur certain courbes du plan complexe. Ann. Sci. Éc. Norm. Sup. 17, 157–189 (1984)

    MATH  Google Scholar 

  19. G. David, J.L. Journé, S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrètives et interpolation. Rev. Mat. Iberoam. 1 (4), 1–56 (1985)

    Article  MATH  Google Scholar 

  20. P.L. Duren, Theory of H p Spaces (Dover, Mineola, 2000)

    Google Scholar 

  21. D. Ehsani, I. Lieb, L p-estimates for the Bergman projection on strictly pseudo-convex non-smooth domains. Math. Nachr. 281, 916–929 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudo-convex domains. Invent. Math. 26, 1–65 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. G.B. Folland, J.J. Kohn, The Neumann Problem for the Cauchy-Riemann Complex. Annals of Mathematics Studies, vol. 75 (Princeton University Press, Princeton 1972)

    Google Scholar 

  24. N. Hanges, Explicit formulas for the Szegő kernel for some domains in \(\mathbb{C}^{2}\). J. Funct. Anal. 88, 153–165 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. N. Hanges, G. Francsics, Trèves curves and the Szegő kernel. Indiana Univ. Math. J. 47, 995–1009 (1998)

    MathSciNet  MATH  Google Scholar 

  26. T. Hansson, On Hardy spaces in complex ellipsoids. Ann. Inst. Fourier (Grenoble) 49, 1477–1501 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Hedenmalm, The dual of a Bergman space on simply connected domains. J. d’ Anal. 88, 311–335 (2002)

    MathSciNet  MATH  Google Scholar 

  28. G. Henkin, Integral representations of functions holomorphic in strictly pseudo-convex domains and some applications. Mat. Sb. 78, 611–632 (1969). Engl. Transl. Math. USSR Sb. 7, 597–616 (1969)

    Google Scholar 

  29. G.M. Henkin, Integral representations of functions holomorphic in strictly pseudo-convex domains and applications to the \(\overline{\partial }\)-problem. Mat. Sb. 82, 300–308 (1970). Engl. Transl. Math. USSR Sb. 11, 273–281 (1970)

    Google Scholar 

  30. G.M. Henkin, J. Leiterer, Theory of Functions on Complex Manifolds (Birkhäuser, Basel, 1984)

    Google Scholar 

  31. L. Hörmander, An Introduction to Complex Analysis in Several Variables. North Holland Math. Library (North Holland Publishing Co., Amsterdam, 1990)

    Google Scholar 

  32. L. Hörmander, Notions of Convexity (Birkhäuser, Basel, 1994)

    MATH  Google Scholar 

  33. C. Kenig, Weighted H p spaces on Lipschitz domains. Am. J. Math. 102 (1), 129–163 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. C. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems. CBMS Regional Conference Series in Mathematics, vol. 83 (American Mathematics Society, Providence RI, 1994). 0-8218-0309-3

    Google Scholar 

  35. N. Kerzman, E.M. Stein, The Szegö kernel in terms of the Cauchy-Fantappié kernels. Duke Math. J. 25, 197–224 (1978)

    Article  MATH  Google Scholar 

  36. K.D. Koenig, Comparing the Bergman and Szegő projections on domains with subelliptic boundary Laplacian. Math. Ann. 339, 667–693 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. K.D. Koenig, An analogue of the Kerzman-Stein formula for the Bergman and Szegő projections. J. Geom. Anal. 19, 81–863 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. K. Koenig, L. Lanzani, Bergman vs. Szegő via Conformal Mapping. Indiana Univ. Math. J. 58 (2), 969–997 (2009)

    Article  MATH  Google Scholar 

  39. S. Krantz, Canonical kernels versus constructible kernels. Preprint. ArXiv: 1112.1094

    Google Scholar 

  40. S. Krantz, Function Theory of Several Complex Variables, 2nd edn. (American Mathematical Society, Providence, RI, 2001)

    Book  MATH  Google Scholar 

  41. S. Krantz, M. Peloso, The Bergman kernel and projection on non-smooth worm domains. Houst. J. Math. 34, 873–950 (2008)

    MathSciNet  MATH  Google Scholar 

  42. L. Lanzani, Cauchy transform and Hardy spaces for rough planar domains, Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis (Philadelphia, PA, 1998). Contemporary Mathematics, vol. 251 (American Mathematical Society, Providence, RI, 2000), pp. 409–428

    Google Scholar 

  43. L. Lanzani, E.M. Stein, Cauchy-Szegö and Bergman projections on non-smooth planar domains. J. Geom. Anal. 14, 63–86 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. L. Lanzani, E.M. Stein, The Bergman projection in L p for domains with minimal smoothness. Ill. J. Math. 56 (1), 127–154 (2013)

    MathSciNet  MATH  Google Scholar 

  45. L. Lanzani, E.M. Stein, Cauchy-type integrals in several complex variables. Bull. Math. Sci. 3 (2), 241–285 (2013). doi:10.1007/s13373-013-0038-y

    Article  MathSciNet  MATH  Google Scholar 

  46. L. Lanzani, E.M. Stein, The Cauchy integral in \(\mathbb{C}^{n}\) for domains with minimal smoothness. Adv. Math. 264, 776–830 (2014). doi:10.1016/j.aim.2014.07.016

    Article  MathSciNet  MATH  Google Scholar 

  47. L. Lanzani, E.M. Stein, The Cauchy-Szegő projection for domains in \(\mathbb{C}^{n}\) with minimal smoothness. To appear in Duke Math. J.

    Google Scholar 

  48. E. Ligocka, The Hölder continuity of the Bergman projection and proper holomorphic mappings. Stud. Math. 80, 89–107 (1984)

    MathSciNet  MATH  Google Scholar 

  49. J. McNeal, Boundary behavior of the Bergman kernel function in \(\mathbb{C}^{2}\). Duke Math. J. 58 (2), 499–512 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  50. J. McNeal, Estimates on the Bergman kernel of convex domains. Adv. Math. 109, 108–139 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  51. J. McNeal, E.M. Stein, Mapping properties of the Bergman projection on convex domains of finite type. Duke Math. J. 73 (1), 177–199 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  52. J. McNeal, E.M. Stein, The Szegö projection on convex domains. Math. Zeit. 224, 519–553 (1997)

    Article  MATH  Google Scholar 

  53. A. Nagel, J.-P. Rosay, E.M. Stein, S. Wainger, Estimates for the Bergman and Szegö kernels in \(\mathbb{C}^{2}\). Ann. Math. 129 (2), 113–149 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  54. D. Phong, E.M. Stein, Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains. Duke Math. J. 44 (3), 695–704 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  55. E. Ramirez, Ein divisionproblem und randintegraldarstellungen in der komplexen analysis. Math. Ann. 184, 172–187 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables (Springer, Berlin, 1986)

    Book  MATH  Google Scholar 

  57. R.M. Range, An integral kernel for weakly pseudoconvex domains. Math. Ann. 356, 793–808 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  58. A.S. Rotkevich, The Aizenberg formula in nonconvex domains and some of its applications. (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 389 (2011); Issledovaniya po Lineinym Operatoram i Teorii Funktsii. 38, 206–231; 288; translation in J. Math. Sci. (N.Y.) 182 (5), 699–713 (2012)

    Google Scholar 

  59. A.S. Rotkevich, The Cauchy-Leray-Fantappiè integral in linearly convex domains. (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 401 (2012); Issledovaniya po Lineinym Operatoram i Teorii Funktsii 40, 172–188; 201; translation in J. Math. Sci. (N.Y.) 194 (6), 693–702 (2013)

    Google Scholar 

  60. W. Rudin, Function Theory in the Unit Ball of \(\mathbb{C}^{n}\) (Springer, Berlin, 1980)

    Book  Google Scholar 

  61. E.M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables (Princeton University Press, Princeton, 1972)

    MATH  Google Scholar 

  62. E.L. Stout, H p-functions on strictly pseudoconvex domains. Am. J. Math. 98 (3), 821–852 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  63. Y. Zeytuncu, L p-regularity of weighted Bergman projections. Trans. AMS 365, 2959–2976 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Loredana Lanzani is supported in part by the National Science Foundation, awards DMS-1001304 and DMS-1503612. Elias M. Stein is supported in part by the National Science Foundation, awards DMS-0901040 and DMS-1265524.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loredana Lanzani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lanzani, L., Stein, E.M. (2016). Hardy Spaces of Holomorphic Functions for Domains in ℂn with Minimal Smoothness. In: Pereyra, M., Marcantognini, S., Stokolos, A., Urbina, W. (eds) Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory (Volume 1). Association for Women in Mathematics Series, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-30961-3_11

Download citation

Publish with us

Policies and ethics