Skip to main content

A New Framework for Strategic Risk Analysis in a Global Pump Manufacturing Network

  • Conference paper
  • First Online:
Enterprise Interoperability VII

Part of the book series: Proceedings of the I-ESA Conferences ((IESACONF,volume 8))

Abstract

This paper presents a new risk analysis framework applied to a global production network for pump manufacturing considering strategic decisions regarding alternative suppliers and markets. External and internal risk scenarios are defined and alternative network configurations are evaluated considering the constructed risk scenarios. Inoperability of individual nodes in the global production networks caused by identified risks are determined by taking into account propagation of risks due to the interdependencies between nodes. Fuzzy arithmetic is applied to track the level of uncertainty inherent in the model parameters and the outcomes. It is demonstrated how recommendations can be made with regard to the network configuration and handling of the uncertainty in the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coe, N. M., Dicken, P., & Hess, M. (2008). Global production networks: Realizing the potential. Journal of Economic Geography, 8, 271–295. doi:10.1093/jeg/lbn002

    Article  Google Scholar 

  2. Hallikas, J., Karvonen, I., Pulkkinen, U., & Virolainen, V. (2004). Risk management processes in supplier networks. International Journal of Production Economics, 90, 47–58. doi:10.1016/j.ijpe.2004.02.007

    Article  Google Scholar 

  3. Rangel, D. A., de Oliveira, T. K., & Leite, M. S. A. (2014). Supply chain risk classification: Discussion and proposal. International Journal of Production Research, 1–20. doi:10.1080/00207543.2014.910620

    Google Scholar 

  4. Ghadge, A., Dani, S., & Kalawsky, R. (2011). Systems thinking for modeling risk propagation in supply networks. In 2011 IEEE MTT-S International Microwave Workshop Series on Innovation Wireless Power Transmission Technology System, Applications (pp. 1685–1689). doi:10.1109/IMWS.2011.6116790

  5. Mizgier, K., Jüttner, M., & Wagner, S. (2013). Bottleneck identification in supply chain networks. International Journal of Production Research, 51, 1477–1490.

    Article  Google Scholar 

  6. Ackermann, F., Howick, S., Quigley, J., Walls, L., & Houghton, T. (2014). Systemic risk elicitation: Using causal maps to engage stakeholders and build a comprehensive view of risks. European Journal of Operational Research, 238, 290–299. doi:10.1016/j.ejor.2014.03.035

    Article  MathSciNet  MATH  Google Scholar 

  7. Heckmann, I., Comes, T., & Nickel, S. (2015). A critical review on supply chain risk—Definition, measure and modeling. Omega, 52, 119–132. doi:10.1016/j.omega.2014.10.004

    Article  Google Scholar 

  8. Santos, J. R., & Haimes, Y. Y. (2004). Modeling the demand reduction input–output (I–O) inoperability due to terrorism of interconnected infrastructures. Risk Analysis, 24, 1437–1451. doi:10.1111/j.0272-4332.2004.00540.x

    Article  Google Scholar 

  9. Haimes, Y. Y., & Horowitz, B. M. (2005). Inoperability input–output model for interdependent infrastructure sectors. I: Theory and methodology. Journal of Infrastructure Systems, 11, 67–79.

    Article  Google Scholar 

  10. Panzieri, S., & Setola, R. (2008). Failures propagation in critical interdependent infrastructures. International Journal of Modelling, Identification and Control, 3, 69–78.

    Google Scholar 

  11. Setola, R., De Porcellinis, S., & Sforna, M. (2009). Critical infrastructure dependency assessment using the input–output inoperability model. International Journal of Critical Infrastructure Protection, 2, 170–178. doi:10.1016/j.ijcip.2009.09.002

    Article  Google Scholar 

  12. Oliva, G., Panzieri, S., & Setola, R. (2011). Fuzzy dynamic input–output inoperability model. International Journal of Critical Infrastructure Protection, 4, 165–175. doi:10.1016/j.ijcip.2011.09.003

    Article  Google Scholar 

  13. Oliva, G., Setola, R., & Barker, K. (2014). Fuzzy importance measures for ranking key interdependent sectors under uncertainty. IEEE Transactions on Reliability, 63, 42–57. doi:10.1109/TR.2014.2299113

    Article  Google Scholar 

  14. Wei, H., Dong, M., & Sun, S. (2010). Inoperability input–output modeling (IIM) of disruptions to supply chain networks. Syst Eng, 13, 324–339. doi:10.1002/sys

    Google Scholar 

  15. Edelbrock, M., Niknejad, A., Schlosser, S, Petrovic, D., Otto, B., & Popplewell, K. (2015). FLEXINET deliverable [D2.3]: Design specification for business model innovation.

    Google Scholar 

Download references

Acknowledgments

This work has been funded by the European Commission through the Project FLEXINET: Intelligent System Configuration Services for Flexible Dynamic Global Production Networks (Grant Agreement No. 608627), which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Niknejad .

Editor information

Editors and Affiliations

Appendix: Fuzzy Dynamic Inoperability Input Output Model

Appendix: Fuzzy Dynamic Inoperability Input Output Model

A vector representation of the fuzzy dynamic inoperability input output model function is as follows:

$$\tilde{q}\left({t + 1} \right) = \widetilde{K}\widetilde{{A}^{ *}} \tilde{q}\left(t \right) + \widetilde{K}\widetilde{{c}^{ *}} \left(t \right) + \left({I - \widetilde{K}} \right)\tilde{q}(t)$$
(1)

where \(\tilde{q}\left({t + 1} \right)\) is the vector of fuzzy inoperability of nodes at time period \(t + 1,\widetilde{K}\) is the fuzzy diagonal matrix of resilience, \(\widetilde{A^{ *} }\) is the fuzzy interdependency matrix and \(\widetilde{{c}^{ *}} \left(t \right)\) is the fuzzy perturbation of nodes for the risk scenario under consideration at time period t. Resilience represents the speed that the node can recover from disruptions.

The expected loss of risk for all risk scenarios is calculated as follows:

$$\tilde{Q} = \widetilde{{x}^{T}} \mathop \sum \limits_{s = 1}^{S} \widetilde{{p}_{s}} \mathop \sum \limits_{t = 1}^{T} \widetilde{{q}_{s} \left(t \right)}$$
(2)

where \(\tilde{Q}\) is the fuzzy loss of risk for the GPN configuration, \(\widetilde{{x}^{T}}\) is the transposed vector of the fuzzy intended revenues of the nodes, S is the number of risk scenarios, \(\widetilde{{p}_{s}}\) is the fuzzy likelihood of risk scenario s, T is the number of time periods in the time horizon and \(\widetilde{{q}_{s}} (t)\) is the fuzzy inoperability vector of nodes in scenario s at time period t.

The FDDIM method have been described in more details in [15].

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Niknejad, A., Petrovic, D., Popplewell, K., Jäkel, F.W., Pajkovska-Goceva, S. (2016). A New Framework for Strategic Risk Analysis in a Global Pump Manufacturing Network. In: Mertins, K., Jardim-Gonçalves, R., Popplewell, K., Mendonça, J. (eds) Enterprise Interoperability VII. Proceedings of the I-ESA Conferences, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-30957-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30957-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30956-9

  • Online ISBN: 978-3-319-30957-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics