Skip to main content

Matroid Theory for Algebraic Geometers

  • Conference paper
  • First Online:
Nonarchimedean and Tropical Geometry

Part of the book series: Simons Symposia ((SISY))

Abstract

This article is an introduction to matroid theory aimed at algebraic geometers. Matroids are combinatorial abstractions of linear subspaces and hyperplane arrangements. Not all matroids come from linear subspaces; those that do are said to be representable. Still, one may apply linear algebraic constructions to non-representable matroids. There are a number of different definitions of matroids, a phenomenon known as cryptomorphism. In this survey, we begin by reviewing the classical definitions of matroids, develop operations in matroid theory, summarize some results in representability, and construct polynomial invariants of matroids. Afterwards, we focus on matroid polytopes, introduced by Gelfand–Goresky–MacPherson–Serganova, which give a cryptomorphic definition of matroids. We explain certain locally closed subsets of the Grassmannian, thin Schubert cells, which are labeled by matroids, and which have applications to representability, moduli problems, and invariants of matroids following Fink–Speyer. We explain how matroids can be thought of as cohomology classes in a particular toric variety, the permutohedral variety, by means of Bergman fans, and apply this description to give an exposition of the proof of log-concavity of the characteristic polynomial of representable matroids due to the author with Huh.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aigner, M.: Whitney numbers. In: Combinatorial Geometries, pp. 139–160. Encyclopedia of Mathematics and Its Applications, vol. 29. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  2. Aluffi, P.: Grothendieck classes and Chern classes of hyperplane arrangements. Int. Math. Res. Not. 8, 1873–1900 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Ardila, F., Klivans, C.: The Bergman complex of a matroid and phylogenetic trees. J. Comb. Theory Ser. B 96, 38–49 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ardila, F., Fink, A., Rincón, F.: Valuations for matroid polytope subdivisions. Can. J. Math. 62, 1228–1245 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Allermann, L., Rau, J.: First steps in tropical intersection theory. Math. Z. 264, 633–670 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Athanasiadis, C.: Characteristic polynomials of subspace arrangements and finite fields. Adv. Math. 122, 193–233 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Belaire, T., Katz, E.: A computer verification of the Hodge index conjecture for small matroids (in preparation)

    Google Scholar 

  8. Bergman, G.M.: The logarithmic limit-set of an algebraic variety. Trans. Am. Math. Soc. 157, 459–469 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bieri, R., Groves, J.R.J.: The geometry of the set of characters induced by valuations. J. Reine Angew. Math. 347, 168–195 (1984)

    MathSciNet  MATH  Google Scholar 

  10. Billera, L., Jia, N., Reiner, V.: A quasisymmetric function for matroids. Eur. J. Comb. 30, 1727–1757 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Birkhoff, G.: A determinant formula for the number of ways of coloring a map. Ann. Math. 14, 42–46 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bixby, R.E.: On Reid’s characterization of the ternary matroids. J. Comb. Theory Ser. B. 26, 174–204 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bixby, R.E., Cunnigham, W.H.: Matroid optimization and algorithms. Handbook of Combinatorics, vol. 551–609. Elsevier, Amsterdam (1995)

    Google Scholar 

  14. Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.: Oriented Matroids. Encyclopedia of Mathematics and Its Applications, vol. 46. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  15. Borovik, A., Gelfand, I.M., White, N.: Coxeter Matroids. Birkhäuser, Boston, MA (2003)

    Book  MATH  Google Scholar 

  16. Brylawski, T.: Constructions. Theory of matroids, 127–223, Encyclopedia of Mathematics and Its Applications, vol. 26. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  17. Brylawski, T., Kelly, D.: Matroids and Combinatorial Geometries. Carolina Lecture Series. Department of Mathematics, University of North Carolina, Chapel Hill, NC (1980)

    MATH  Google Scholar 

  18. Cartwright, D.: Lifting matroid divisors on tropical curves. Res. Math. Sci. 2, 23 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cox, D., Little, J., Schenck, H.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence, RI (2011)

    Google Scholar 

  20. Crapo, H.H.: Single-element extensions of matroids. J. Res. Natl. Bur. Stand. Sect. B 69, 55–65 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  21. Crapo, H.H.: The Tutte polynomial. Aeq. Math. 3, 211–229 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  22. Crapo, H.H., Rota, G.-C.: On the Foundations of Combinatorial Theory: Combinatorial Geometries, Preliminary edition. MIT, Cambridge, MA, London (1970)

    Google Scholar 

  23. Dat, J.-F., Orlik, S., Rapoport, M.: Period domains over finite and p-adic fields. Cambridge Tracts in Mathematics, vol. 183. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  24. Dawson, J.: A collection of sets related to the Tutte polynomial of a matroid. In: Graph theory, Singapore 1983, pp. 193–204. Lecture Notes in Mathematics, vol. 1073. Springer, Berlin (1984)

    Google Scholar 

  25. Denham, G.: Toric and tropical compactifications of hyperplane complements. Ann. Fac. Sci. Toulouse Math. 23, 297–333 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Derksen, H.: Symmetric and quasi-symmetric functions associated to polymatroids. J. Algebraic Comb. 30, 43–86 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Derksen, H., Fink, A.: Valuative invariants for polymatroids. Adv. Math. 225, 1840–1892 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Diestel, R.: Graph Theory. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  29. Dress, A.: Duality theory for finite and infinite matroids with coefficients. Adv. Math. 59, 97–123 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dress, A., Wenzel, W.: Grassmann-Plücker relations for matroids with coefficients. Adv. Math. 86, 68–110 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Edidin, D., Graham, W.: Equivariant intersection theory. Invent. Math. 131, 595–634 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. Combinatorial Structures and Their Applications. Proceedings of Calgary International Conference, Calgary, Alberta, 1969, pp. 69–87. Gordon and Breach, New York (1970)

    Google Scholar 

  33. Feichtner, E.V., Sturmfels, B.: Matroid polytopes, nested sets, and Bergman fans. Port. Math. 62, 437–468 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Fink, A.: Tropical cycles and Chow polytopes. Beitr. Algebra Geom. 54, 13–40 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Fink, A., Moci, L.: Matroids over a ring. J. Eur. Math. Soc. 18, 681–731 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fink, A., Speyer, D.: K-classes of matroids and equivariant localization. Duke Math. J. 161, 2699–2723 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Fulton, W.: Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 2(3). Springer, Berlin (1984)

    Google Scholar 

  38. Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton, NJ (1993)

    Google Scholar 

  39. Fulton, W., Sturmfels, B.: Intersection theory on toric varieties. Topology 36 (2), 335–353 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. Geelen, J., Gerards, B., Whittle, G.: Structure in minor-closed classes of matroids. In: Surveys in Combinatorics 2013, pp. 327–362. London Mathematical Society Lecture Notes, vol. 409. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  41. Geelen, J., Gerards, B., Whittle, G.: Solving Rota’s conjecture. Not. Am. Math. Soc. 61, 736–743 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gelfand, I.M., Goresky, M., MacPherson, R., Serganova, V.: Combinatorial geometries, convex polyhedra, and Schubert cells. Adv. Math. 63, 301–316 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

  44. Huh, J.: Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs. J. Am. Math. Soc. 25, 907–927 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Huh, J.: Rota’s conjecture and positivity of algebraic cycles in permutohedral varieties. Ph.D. thesis, University of Michigan (2014)

    Google Scholar 

  46. Huh, J.: h-vectors of matroids and logarithmic concavity. Adv. Math. 270, 49–59 (2015)

    Google Scholar 

  47. Huh, J., Katz, E.: Log-concavity of characteristic polynomials and the Bergman fan of matroids. Math. Ann. 354, 1103–1116 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ingleton, A.W.: Representation of matroids. In: Combinatorial Mathematics and its Applications. Proceedings of Conference, Oxford, 1969, pp. 149–167. Academic Press, London (1971)

    Google Scholar 

  49. Ingleton, A.W., Main, R.A.: Non-algebraic matroids exist. Bull. London Math. Soc. 7, 144–146 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  50. Jensen, D.: The locus of Brill-Noether general graphs is not dense (2015). Preprint, arXiv:1405.6338

    Google Scholar 

  51. Katz, E.: A tropical toolkit. Expo. Math. 27, 1–36 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Katz, E.: Tropical intersection theory from toric varieties. Collect. Math. 63, 29–44 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Katz, E., Payne, S.: Realization spaces for tropical fans. In: Combinatorial Aspects of Commutative Algebra and Algebraic Geometry, pp. 73–88. Abel Symposium, vol. 6. Springer, Berlin (2011)

    Google Scholar 

  54. Katz, E., Stapledon, A.: Tropical geometry and the motivic nearby fiber. Compos. Math. 148, 269–294 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kinser, R.: New inequalities for subspace arrangements. J. Combin. Theory Ser. A 118, 152–161 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Kleiman, S.L.: Toward a numerical theory of ampleness. Ann. Math. 84, 293–344 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  57. Kleiman, S.L.: The transversality of a general translate. Comp. Math. 28, 287–297 (1974)

    MathSciNet  MATH  Google Scholar 

  58. Knutson, A., Rosu, I.: Equivariant K-theory and equivariant cohomology. Math. Zeit. 243, 423–448 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  59. Kung, J.: Strong maps. In: Theory of Matroids, pp. 224–253. Encyclopedia of Mathematics and its Applications, vol. 26. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  60. Lafforgue, L.: Chirurgie des grassmanniennes. American Mathematical Society, Providence, RI (2003)

    Google Scholar 

  61. Lazarsfeld, R.: Positivity in algebraic geometry. I. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 48. Springer, Berlin (2004)

    Google Scholar 

  62. Lee, S.H., Vakil, R.: Mnëv-Sturmfels universality for schemes. In: A Celebration of Algebraic Geometry, pp. 457–468. Clay Mathematics Proceedings, vol. 18. American Mathematical Society, Providence, RI (2013)

    Google Scholar 

  63. Len, Y.: A note on algebraic rank, matroids, and metrized complexes. Math. Res. Lett (2014). Preprint: arXiv:1410.8156 (to appear)

    Google Scholar 

  64. Lenz, M.: The f-vector of a realizable matroid complex is strictly log-concave. Adv. Appl. Math. 51, 543–545 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  65. Lorscheid, O.: A blueprinted view on \(\mathbb{F}_{1}\) geometry, chapter. In: ECM Monograph Absolute Arithmetic and F1-Geometry (2013, to appear)

    Google Scholar 

  66. Mayhew, D., Royle, G.F.: Matroids with nine elements. J. Comb. Theory Ser. B 98, 415–431 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  67. Mayhew, D., Newman, M., Whittle, G.: On excluded minors for real-representability. J. Comb. Theory Ser. B 99, 685–689 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  68. Mayhew, D., Newman, M., Welsh, D., Whittle, G.: On the asymptotic proportion of connected matroids. Eur. J. Comb. 32, 882–890 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  69. Mayhew, D., Newman, M., Whittle, G.: Is the missing axiom of matroid theory lost forever? Q. J. Math. 65, 1397–1415 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  70. Mayhew, D., Newman, M., Whittle, G.: Yes, the missing axiom of matroid theory is lost forever (2014). Preprint, arXiv:1412.8399

    Google Scholar 

  71. Mikhalkin, G.: What are the tropical counterparts of algebraic varieties. Oberwolfach Reports 5, 1460–1462 (2008)

    Google Scholar 

  72. Orlik, P., Solomon, L.: Combinatorics and topology of complements of hyperplanes. Invent. Math. 56, 167–189 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  73. Orlik, P., Terao, H.: Arrangements of Hyperplanes. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  74. Oxley, J.: Matroid Theory. Oxford Graduate Texts in Mathematics, vol. 21. Oxford University Press, Oxford (2011)

    Google Scholar 

  75. Pendavingh, R.A., van Zwam, S.H.M.: Lifts of matroid representations over partial fields. J. Comb. Theory Ser. B 100, 36–67 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  76. Peters, C., Steenbrink, J.: Mixed Hodge Structures. Springer, Berlin (2008)

    MATH  Google Scholar 

  77. Poonen, B.: Hilbert’s Tenth Problem over rings of number-theoretic interest (2003). Available at http://www-math.mit.edu/~poonen/

  78. Proudfoot, N., Speyer, D.: A broken circuit ring. Beitr. Algebra Geom. 47, 161–166 (2006)

    MathSciNet  MATH  Google Scholar 

  79. Read, R.C.: An introduction to chromatic polynomials. J. Comb. Theory 4, 52–71 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  80. Reiner, V.: Lectures on Matroids and Oriented Matroids. 2005. Available at http://www.math.umn.edu/~reiner/Talks/Vienna05/Lectures.pdf

  81. Richter-Gebert, J.: Mnëv’s universality theorem revisited. Sém. Lothar. Combin. 34, 211–225 (1995)

    MathSciNet  MATH  Google Scholar 

  82. Rota, G.-C..: On the foundations of combinatorial theory. I. Theory of Möbius functions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2, 340–368 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  83. Rota, G.-C.: Combinatorial theory, old and new. In: Actes du Congrès International des Mathématiciens (Nice, 1970), vol. 3, pp. 229–233. Gauthier-Villars, Paris (1971)

    Google Scholar 

  84. Sanyal, R., Sturmfels, B., Vinzant, C.: The entropic discriminant. Adv. Math. 244, 678–707 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  85. Seymour, P.D.: Matroid representation over \(\mathop{\mathrm{GF}}\nolimits (3)\). J. Comb. Theory. Ser. B 22, 159–173 (1977)

    Article  MathSciNet  Google Scholar 

  86. Seymour, P.D.: On the points-lines-planes conjecture. J. Comb. Theory Ser. B 33, 17–26 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  87. Shaw, K.M.: A tropical intersection product in matroidal fans. SIAM J. Discrete Math. 27, 459–491 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  88. Shor, P.: Stretchability of pseudolines is NP-hard. In: Applied Geometry and Discrete Mathematics – The Victor Klee Festschrift. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, 531–554. American Mathematical Society, Providence, RI (1991)

    Google Scholar 

  89. Speyer, D.: Tropical linear spaces. SIAM J. Discrete Math. 22, 1527–1558 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  90. Speyer, D.: A matroid invariant via the K-theory of the Grassmannian. Adv. Math. 221, 882–913 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  91. Stanley, R.: Enumerative Combinatorics, vol. 1. Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  92. Stanley, R.: An introduction to hyperplane arrangements. In: Geometric Combinatorics, pp. 389–496. IAS/Park City Mathematical Series, vol. 13. American Mathematical Society, Providence, RI (2007)

    Google Scholar 

  93. Sturmfels, B.: On the decidability of Diophantine problems in combinatorial geometry. Bull. Am. Math. Soc. 17, 121–124 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  94. Sturmfels, B.: Solving Systems of Polynomial Equations. CBMS Regional Conference Series in Mathematics, vol. 97. American Mathematical Society, Providence, RI (2002)

    Google Scholar 

  95. Sturmfels, B., Tevelev, J.: Elimination theory for tropical varieties. Math. Res. Lett. 15, 543–562 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  96. Tutte, W.: A ring in graph theory. Proc. Camb. Philos. Soc. 43, 26–40 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  97. Tutte, W.: A homotopy theorem for matroids, I and II. Trans. Am. Math. Soc. 88, 144–174 (1958)

    MathSciNet  MATH  Google Scholar 

  98. Tutte, W.: All the king’s horses – a guide to reconstruction. Graph Theory and Related Topics, pp. 15–33. Academic Press, New York (1979)

    Google Scholar 

  99. Vakil, R.: Murphy’s law in algebraic geometry: badly-behaved deformation spaces. Invent. Math. 164, 569–590 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  100. Vámos, P.: The missing axiom of matroid theory is lost forever. J. Lond. Math. Soc. (2) 18, 403–408 (1978)

    Google Scholar 

  101. Vezzosi, G., Vistoli, A.: Higher algebraic K-theory for actions of diagonalizable groups. Invent. Math. 153, 1–44 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  102. Welsh, D.J.A.: Matroid Theory. Academic Press, London, New York (1976)

    MATH  Google Scholar 

  103. White, N.L.: The bracket ring of a combinatorial geometry I. Trans. Am. Math. Soc. 202, 79–95 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  104. White, N.L.: The basis monomial ring of a matroid. Adv. Math. 24, 292–297 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  105. White, N.L.: Theory of matroids. In: Encyclopedia of Mathematics and Its Applications, vol. 26. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  106. White, N.L.: Combinatorial geometries. In: Encyclopedia of Mathematics and Its Applications, vol. 29. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  107. White, N.L.: Matroid applications. In: Encyclopedia of Mathematics and Its Applications, vol. 40. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  108. Whitney, H.: On the abstract properties of linear dependence. Am. J. Math. 57, 509–533 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  109. Wilson, R.J.: An introduction to matroid theory. Am. Math. Mon. 80, 500–525 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Katz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Katz, E. (2016). Matroid Theory for Algebraic Geometers. In: Baker, M., Payne, S. (eds) Nonarchimedean and Tropical Geometry. Simons Symposia. Springer, Cham. https://doi.org/10.1007/978-3-319-30945-3_12

Download citation

Publish with us

Policies and ethics