Skip to main content

Degeneration of Linear Series from the Tropical Point of View and Applications

  • Conference paper
  • First Online:
Nonarchimedean and Tropical Geometry

Part of the book series: Simons Symposia ((SISY))

Abstract

We discuss linear series on tropical curves and their relation to classical algebraic geometry, describe the main techniques of the subject, and survey some of the recent major developments in the field, with an emphasis on applications to problems in Brill–Noether theory and arithmetic geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We say C 0 is semistable if it is reduced and has only nodes as singularities. The term strongly semistable is not completely standard.

  2. 2.

    The reason for the name compact type is that the Jacobian of a nodal curve C 0 is an extension of the Jacobian of the normalization of C 0 by a torus of dimension equal to the first Betti number of the dual graph. It follows that the Jacobian of C 0 is compact if and only if its dual graph is a tree.

  3. 3.

    As a caution, some authors use the opposite sign convention.

  4. 4.

    Another natural idea would be to try to define r(D) as one less than the “dimension” of R(D) considered as a semimodule over the tropical semiring T consisting of \(\mathbb{R} \cup \{\infty \}\) together with the operations of min and plus. However, this approach also faces significant difficulties. See [73] for a detailed discussion of the tropical semimodule structure on R(D).

  5. 5.

    Sam Payne has pointed out that there is a gap in the proof of Conjectures 3.10 and 3.14 of Baker [17] given in [34]. The claim on page 82 that W d, ϕ r has nonempty fiber over b 0 does not follow from the discussion that precedes it. A priori, the fiber of \(\overline{W_{d,\phi }^{r}}\) over b 0 might be contained in the boundary \(\overline{P_{\phi }^{d}}\setminus \mathop{\mathrm{Pic}}\nolimits _{ \phi }^{d}\) of the compactified relative Picard scheme.

  6. 6.

    Although there is no known efficient algorithm; indeed, it is proved in [85] that this problem is NP-hard.

  7. 7.

    Note that there is a one-to-one correspondence between norms on K(X) and valuations on K(X), hence the terminology Val X . It is often convenient to work with (semi-)valuations rather than (semi-)norms.

  8. 8.

    See [21, Appendix B] for an introduction to the theory of \(\mathbb{R}\)-trees. For our purposes, what is most important about \(\mathbb{R}\)-trees is that there is a unique path between any two points.

  9. 9.

    A vertex-weighted finite graph (G, ω) is called stable if every vertex of weight zero has valence at least 3.

  10. 10.

    This homeomorphism is in fact an isomorphism of “generalized cone complexes with integral structure” in the sense of Abramovich et al. [1].

  11. 11.

    Note that our sign convention here for the divisor of a rational function on \(\Gamma \), which coincides with the one used in [5], is the opposite of the sign convention used in Sect. 3.2, which is also used in a number of other papers in the subject. This should not cause any confusion, but it is good for the reader to be aware of this variability when perusing the literature.

  12. 12.

    Brian Osserman [107] has recently proposed a different framework for doing this.

  13. 13.

    In fact, they consider the graph in which the lengths of the bridge edges between the loops are all zero. There is, however, a natural rank-preserving isomorphism between the Jacobian of a metric graph with a bridge and the Jacobian of the graph in which that bridge has been contracted, so their argument works equally well in this case. We consider the graph with bridges because of its use in [78, 79].

  14. 14.

    Amini has apparently made substantial progress in this direction.

  15. 15.

    This means that for every continuous function \(f: C \rightarrow \mathbb{R}\), we have ∫Cf δn = ∫ C f ω Ar.

References

  1. Abramovich, D., Caporaso, L., Payne, S.: The tropicalization of the moduli space of curves. Ann. Sci. Éc. Norm. Supér. 48 (4), 765–809 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Agrawal, R., Musiker, G., Sotirov, V., Wei, F.: Involutions on standard Young tableaux and divisors on metric graphs. Electron. J. Comb. 20 (3) (2013)

    Google Scholar 

  3. Amini, O.: Reduced divisors and embeddings of tropical curves. Trans. Am. Math. Soc. 365 (9), 4851–4880 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amini, O.: Equidistribution of Weierstrass points on curves over non-Archimedean fields. Preprint, arXiv:1412.0926v1 (2014)

    Google Scholar 

  5. Amini, O., Baker, M.: Linear series on metrized complexes of algebraic curves. Math. Ann. 362 (1–2), 55–106 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Amini, O., Caporaso, L.: Riemann–Roch theory for weighted graphs and tropical curves. Adv. Math. 240, 1–23 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Amini, O., Kool, F.: A spectral lower bound for the divisorial gonality of metric graphs. Preprint, arXiv:1407.5614 (2014)

    Google Scholar 

  8. Amini, O., Baker, M., Brugallé, E., Rabinoff, J.: Lifting harmonic morphisms I: metrized complexes and Berkovich skeleta. Res. Math. Sci. 2, Art. 7, 67 (2015)

    Google Scholar 

  9. Amini, O., Baker, M., Brugallé, E., Rabinoff, J.: Lifting harmonic morphisms II: tropical curves and metrized complexes. Algebra Number Theory. 9 (2), 267–315 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. An, Y., Baker, M., Kuperberg, G., Shokrieh, F.: Canonical representatives for divisor classes on tropical curves and the matrix-tree theorem. Forum Math. Sigma 2, e24, 25 (2014)

    Google Scholar 

  11. Arbarello, E., Ciliberto, C.: Adjoint hypersurfaces to curves in P r following Petri. In: Commutative Algebra (Trento, 1981). Lecture Notes in Pure and Applied Mathematics, vol. 84, pp. 1–21. Dekker, New York (1983)

    Google Scholar 

  12. Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves. Volume I. Grundlehren der Mathematischen Wissenschaften, vol. 267. Springer, New York (1985)

    Google Scholar 

  13. Babbage, D.W.: A note on the quadrics through a canonical curve. J. Lond. Math. Soc. 14, 310–315 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  14. Backman, S.: Infinite reduction of divisors on metric graphs. European J. Comb. 35, 67–74 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Backman, S.: Riemann-Roch theory for graph orientations. Preprint, arXiv:1401.3309 (2014)

    Google Scholar 

  16. Baker, M.: An introduction to Berkovich analytic spaces and non-Archimedean potential theory on curves. In: p-Adic Geometry. University Lecture Series, vol. 45, pp. 123–174. American Mathematical Society, Providence, RI (2008)

    Google Scholar 

  17. Baker, M.: Specialization of linear systems from curves to graphs. Algebra Number Theory 2 (6), 613–653 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Baker, M., Faber, X.: Metric properties of the tropical Abel-Jacobi map. J. Algebraic Combin. 33 (3), 349–381 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Baker, M., Norine, S.: Riemann-Roch and Abel-Jacobi theory on a finite graph. Adv. Math. 215 (2), 766–788 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Baker, M., Rabinoff, J.: The skeleton of the Jacobian, the Jacobian of the skeleton, and lifting meromorphic functions from tropical to algebraic curves. Int. Math. Res. Not. 2015 (16), 7436–7472 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Baker, M., Rumely, R.: Potential theory and dynamics on the Berkovich projective line. Mathematical Surveys and Monographs, vol. 159. American Mathematical Society, Providence, RI (2010)

    Google Scholar 

  22. Baker, M., Shokrieh, F.: Chip-firing games, potential theory on graphs, and spanning trees. J. Comb. Theory Ser. A 120 (1), 164–182 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Baker, M., Wang, Y.: The Bernardi process and torsor structures on spanning trees. Preprint, arXiv:1406.1584 (2014)

    Google Scholar 

  24. Baker, M., Payne, S., Rabinoff, J.: Nonarchimedean geometry, tropicalization, and metrics on curves. Algebraic Geom. Preprint, arXiv:1104.0320v3 (2011, to appear)

    Google Scholar 

  25. Baker, M., Payne, S., Rabinoff, J.: On the structure of non-Archimedean analytic curves. In: Tropical and Non-Archimedean Geometry. Contemporary Mathematics, vol. 605, pp. 93–121. American Mathematical Society, Providence, RI (2013)

    Google Scholar 

  26. Baker, M., Len, Y., Morrison, R., Pflueger, N., Ren, Q.: Bitangents of tropical plane quartic curves. Preprint, arXiv:1404.7568 (2014)

    Google Scholar 

  27. Ballico, E., Ellia, P.: The maximal rank conjecture for nonspecial curves in P 3. Invent. Math. 79 (3), 541–555 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bayer, D., Eisenbud, D.: Graph curves. Adv. Math. 86 (1), 1–40 (1991) With an appendix by Sung Won Park.

    Google Scholar 

  29. Berkovich, V.: Spectral Theory and Analytic Geometry over Non-Archimedean Fields. Mathematical Surveys and Monographs, vol. 33. American Mathematical Society, Providence, RI (1990)

    Google Scholar 

  30. Biggs, N.L.: Chip-firing and the critical group of a graph. J. Algebraic Combin. 9 (1), 25–45 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Brannetti, S., Melo, M., Viviani, F.: On the tropical Torelli map. Adv. Math. 226 (3), 2546–2586 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Caporaso, L.: Néron models and compactified Picard schemes over the moduli stack of stable curves. Am. J. Math. 130 (1), 1–47 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Caporaso, L.: Algebraic and tropical curves: comparing their moduli spaces. In: Farkas and Morrison (eds.) Handbook of Moduli. Adv. Lect. Math. (ALM), vol. 24, pp. 119–160. Int. Press, Somerville (2013)

    Google Scholar 

  34. Caporaso, L.: Algebraic and combinatorial Brill-Noether theory. In: Compact Moduli Spaces and Vector Bundles. Contemporary Mathematics, vol. 564, pp. 69–85. American Mathematical Society, Providence, RI (2012)

    Google Scholar 

  35. Caporaso, L.: Rank of divisors on graphs: an algebro-geometric analysis. In: A Celebration of Algebraic Geometry. Clay Mathematics Proceedings, vol. 18, pp. 45–64. American Mathematical Society, Providence, RI (2013)

    Google Scholar 

  36. Caporaso, L., Viviani, F.: Torelli theorem for graphs and tropical curves. Duke Math. J. 153 (1), 129–171 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Caporaso, L., Harris, J., Mazur, B.: Uniformity of rational points. J. Am. Math. Soc. 10 (1), 1–35 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Caporaso, L., Len, Y., Melo, M.: Algebraic and combinatorial rank of divisors on finite graphs. Preprint, arXiv:1401:5730v2 (2014)

    Google Scholar 

  39. Cartwright, D.: Tropical complexes. Preprint, arXiv:1308.3813 (2013)

    Google Scholar 

  40. Cartwright, D.: Lifting matroid divisors on tropical curves. Preprint, arXiv:1502.03759 (2015)

    Google Scholar 

  41. Cartwright, D., Jensen, D., Payne, S.: Lifting divisors on a generic chain of loops. Canad. Math. Bull. 58 (2), 250–262 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Cartwright, D., Dudzik, A., Manjunath, M., Yao, Y.: Embeddings and immersions of tropical curves. Preprint, arXiv:1409.7372v1 (2014)

    Google Scholar 

  43. Castelnuovo, G., Enriques, F., Severi, F.: Max Noether. Math. Ann. 93 (1), 161–181 (1925)

    Article  MathSciNet  Google Scholar 

  44. Chambert-Loir, A., Ducros, A.: Formes différentielles réelles et courants sur les espaces de Berkovich. Preprint, arXiv:1204.6277 (2012)

    Google Scholar 

  45. Chan, M.: Tropical hyperelliptic curves. J. Algebraic Combin. 37 (2), 331–359 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Chan, M., Jiradilok, P.: Theta characteristics of tropical K 4 curves. Preprint, arXiv:1503:05776v1 (2015)

    Google Scholar 

  47. Ciliberto, C., Harris, J., Miranda, R.: On the surjectivity of the Wahl map. Duke Math. J. 57 (3), 829–858 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  48. Cools, F., Draisma, J., Payne, S., Robeva, E.: A tropical proof of the Brill-Noether theorem. Adv. Math. 230 (2), 759–776 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Cornelissen, G., Fumiharu, K., Kool, J.: A combinatorial Li–Yau inequality and rational points on curves. Math. Ann. 361 (1–2), 211–258 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Coleman, R.F.: Effective Chabauty. Duke Math. J. 52 (3), 765–770 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  51. Conrad, B.: Several approaches to non-Archimedean geometry. In: p-Adic Geometry. University Lecture Series, vol. 45, pp. 9–63. American Mathematical Society, Providence, RI (2008)

    Google Scholar 

  52. Coppens, M.: Clifford’s theorem for graphs. Preprint, arXiv:1304.6101 (2014)

    Google Scholar 

  53. Coppens, M.: Free divisors on metric graphs. Preprint, arXiv:1410.3114 (2014)

    Google Scholar 

  54. Deveau, A., Jensen, D., Kainic, J., Mitropolsky, D.: Gonality of random graphs. Preprint, arXiv:1409.5688 (2014)

    Google Scholar 

  55. Dhar, D.: Self-organized critical state of sandpile automaton models. Phys. Rev. Lett. 64 (14), 1613–1616 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  56. Dhar, D., Ruelle, P., Sen, S., Verma, D.-N.: Algebraic aspects of Abelian sandpile models. J. Phys. A 28 (4), 805–831 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  57. Eisenbud, D., Harris, J.: A simpler proof of the Gieseker-Petri theorem on special divisors. Invent. Math. 74 (2), 269–280 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  58. Eisenbud, D., Harris, J.: Limit linear series: basic theory. Invent. Math. 85 (2), 337–371 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  59. Eisenbud, D., Harris, J.: Existence, decomposition, and limits of certain Weierstrass points. Invent. Math. 87 (3), 495–515 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  60. Esteves, E., Medeiros, N.: Limits of Weierstrass points in regular smoothings of curves with two components. C. R. Acad. Sci. Paris Sér. I Math. 330 (10), 873–878 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  61. Farkas, G.: Koszul divisors on moduli spaces of curves. Am. J. Math. 131 (3), 819–867 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. Foster, T., Gross, P., Payne, S.: Limits of tropicalizations. Israel J. Math. 201 (2), 835–846 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. Gathmann, A., Kerber, M.: A Riemann-Roch theorem in tropical geometry. Math. Z. 259 (1), 217–230 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  64. Gathmann, A., Kerber, M., Markwig, H.: Tropical fans and the moduli spaces of tropical curves. Compos. Math. 145 (1), 173–195 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  65. Gieseker, D.: Stable curves and special divisors: Petri’s conjecture. Invent. Math. 66 (2), 251–275 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  66. Griffiths, P., Harris, J.: On the variety of special linear systems on a general algebraic curve. Duke Math. J. 47 (1), 233–272 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  67. Gubler, W.: Tropical varieties for non-Archimedean analytic spaces. Invent. Math. 169 (2), 321–376 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  68. Gubler, W.: Non-Archimedean canonical measures on abelian varieties. Compos. Math. 146 (3), 683–730 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  69. Gubler, W., Künnemann, K.: A tropical approach to non-Archimedean Arakelov theory. Preprint, arXiv:1406.7637 (2014)

    Google Scholar 

  70. Gubler, W., Rabinoff, J., Werner, A.: Skeletons and tropicalizations. Preprint, arXiv:1404.7044 (2014)

    Google Scholar 

  71. Harris, J.: Curves in Projective Space. Séminaire de Mathématiques Supérieures, vol. 85 Presses de l’Université de Montréal, Montreal, Que (1982) With the collaboration of David Eisenbud

    Google Scholar 

  72. Harris, J., Morrison, I.: Moduli of Curves. Graduate Texts in Mathematics, vol. 187. Springer, New York (1998)

    Google Scholar 

  73. Haase, C., Musiker, G., Yu, J.: Linear systems on tropical curves. Math. Z. 270 (3–4), 1111–1140 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  74. Heinz, N.: Admissible metrics for line bundles on curves and abelian varieties over non-Archimedean local fields. Arch. Math. (Basel) 82 (2), 128–139 (2004)

    Google Scholar 

  75. Hladký, J., Král’, D., Norine, S.: Rank of divisors on tropical curves. J. Combin. Theory Ser. A 120 (7), 1521–1538 (2013)

    Google Scholar 

  76. Holroyd, A., Levine, L., Mészáros, K., Peres, Y., Propp, J., Wilson, D.: Chip-firing and rotor-routing on directed graphs. In: In and Out of Equilibrium 2. Progress in Probability, vol. 60, pp. 331–364. Birkhäuser, Basel (2008)

    Google Scholar 

  77. Jensen, D.: The locus of Brill-Noether general graphs is not dense. Preprint, arXiv:1405.6338 (2014)

    Google Scholar 

  78. Jensen, D., Payne, S.: Tropical independence I: Shapes of divisors and a proof of the Gieseker-Petri theorem. Algebra Number Theory 8 (9), 2043–2066 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  79. Jensen, D., Payne, S.: Tropical independence II: the maximal rank conjecture for quadrics. Algebra Number Theory. http://arxiv.org/abs/1505.05460

  80. Katz, E., Zureick-Brown, D.: The Chabauty-Coleman bound at a prime of bad reduction and Clifford bounds for geometric rank functions. Compos. Math. 149 (11), 1818–1838 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  81. Katz, E., Rabinoff, J., Zureick-Brown, D.: Uniform bounds for the number of rational points on curves of small Mordell-Weil rank. Duke Math J. arXiv:1504.00694 (2015)

    Google Scholar 

  82. Kawaguchi, S., Yamaki, K.: Algebraic rank of hyperelliptic graphs and graphs of genus 3. Preprint, arXiv:1401:3935 (2014)

    Google Scholar 

  83. Kawaguchi, S., Yamaki, K.: Rank of divisors on hyperelliptic curves and graphs under specialization. Preprint, arXiv:1304.6979v3 (2014)

    Google Scholar 

  84. Kempf, G.: Schubert Methods with an Application to Algebraic Curves. Publ. Math. Centrum (1971)

    MATH  Google Scholar 

  85. Kiss, V., Tóthmérész, L.: Chip-firing games on Eulerian digraphs and NP-hardness of computing the rank of a divisor on a graph. Preprint, arXiv:1407.6598 (2014)

    Google Scholar 

  86. Kleiman, S.L., Laksov, D.: Another proof of the existence of special divisors. Acta Math. 132, 163–176 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  87. Kozlov, D.: The topology of moduli spaces of tropical curves with marked points. Asian J. Math. 13 (3), 385–403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  88. Lafforgue, L.: Chirurgie des grassmanniennes. CRM Monograph Series. vol. 19. American Mathematical Society, Providence, RI (2003)

    Google Scholar 

  89. Lazarsfeld, R.: Brill-Noether-Petri without degenerations. J. Differential Geom. 23 (3), 299–307 (1986)

    MathSciNet  MATH  Google Scholar 

  90. Len, Y.: The Brill-Noether rank of a tropical curve. Preprint, arXiv:1209.6309v1 (2012)

    Google Scholar 

  91. Len, Y.L A note on algebraic rank, matroids, and metrized complexes. Preprint, arXiv:1401:8156 (2014)

    Google Scholar 

  92. Levine, L., Propp, J.: What is \(\ldots\) a sandpile? Not. Am. Math. Soc. 57 (8), 976–979 (2010)

    MathSciNet  MATH  Google Scholar 

  93. Lim, C.-M., Payne, S., Potashnik, N.: A note on Brill-Noether theory and rank-determining sets for metric graphs. Int. Math. Res. Not. IMRN 23:5484–5504 (2012)

    MathSciNet  MATH  Google Scholar 

  94. Liu, Q.: Algebraic Geometry and Arithmetic Curves. Oxford Graduate Texts in Mathematics, vol. 6. Oxford University Press, Oxford (2002) Translated from the French by Reinie Erné, Oxford Science Publications

    Google Scholar 

  95. Lorenzini, D., Tucker, T.J.: Thue equations and the method of Chabauty-Coleman. Invent. Math. 148 (1), 47–77 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  96. Luo, Y.: Rank-determining sets of metric graphs. J. Combin. Theory Ser. A 118, 1775–1793 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  97. Luo, Y., Manjunath, M.: Smoothing of limit linear series of rank one on saturated metrized complexes of algebraic curves. Preprint, arXiv:1411.2325 (2014)

    Google Scholar 

  98. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry. Graduate Studies in Mathematics, vol. 161, pp. xii+363. American Mathematical Society, Providence (2015)

    Google Scholar 

  99. McCallum, W., Poonen, B.: The method of Chabauty and Coleman. In: Explicit Methods in Number Theory. Panorama Synthèses, vol. 36 pp. 99–117. Sociëtë Mathëmatique de France, Paris (2012)

    Google Scholar 

  100. Merel, L.: Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124 (1–3), 437–449 (1996)

    Article  MathSciNet  Google Scholar 

  101. Mikhalkin, G., Zharkov, I.: Tropical curves, their Jacobians and theta functions. In: Curves and Abelian Varieties. Contemporary Mathematics, pp. 203–230, vol. 465. American Mathematical Society, Providence, RI (2008)

    Google Scholar 

  102. Mumford, D.: An analytic construction of degenerating abelian varieties over complete rings. Compositio Math. 24, 239–272 (1972)

    MathSciNet  MATH  Google Scholar 

  103. Neeman, A.: The distribution of Weierstrass points on a compact Riemann surface. Ann. Math. (2) 120 (2), 317–328 (1984)

    Google Scholar 

  104. Nicaise, J.: Singular cohomology of the analytic Milnor fiber, and mixed Hodge structure on the nearby cohomology. J. Algebraic Geom. 20 (2), 199–237 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  105. Noether, M.: Zur Grundlegung der Theorie der algebraische raumcurven. J. Reine Angew. Math. 93, 271–318 (1882)

    MathSciNet  Google Scholar 

  106. Ogg, A.P.: On the Weierstrass points of X 0(N). Ill. J. Math. 22 (1), 31–35 (1978)

    MathSciNet  MATH  Google Scholar 

  107. Osserman, B.: Limit linear series for curves not of compact type. Preprint, arXiv:1406.6699 (2014)

    Google Scholar 

  108. Payne, S.: Analytification is the limit of all tropicalizations. Math. Res. Lett. 16 (3), 543–556 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  109. Perkinson, D., Perlman, J., Wilmes, J.: Primer for the algebraic geometry of sandpiles. In: Tropical and Non-Archimedean Geometry. Contemporary Mathematics, vol. 605, pp. 211–256. American Mathematical Society, Providence, RI (2013)

    Google Scholar 

  110. Rabinoff, J.: Tropical analytic geometry, Newton polygons, and tropical intersections. Adv. Math. 229 (6), 3192–3255 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  111. Raynaud, M.: Spécialisation du foncteur de Picard. Inst. Hautes Études Sci. Publ. Math. (38 ), 27–76 (1970)

    Google Scholar 

  112. Severi, F.: Sulla classificazione delle curve algebriche e sul teorema di esistenza di Riemann. Rend. R. Acc. Naz. Lincei 24 (5), 887–888 (1915)

    MATH  Google Scholar 

  113. Stoll, M.: Independence of rational points on twists of a given curve. Compos. Math. 142 (5), 1201–1214 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  114. Stoll, M.: Uniform bounds for the number of rational points on hyperelliptic curves of small Mordell-Weil rank. J. Eur. Math. Soc. arXiv:1307.1773v4 (2013)

    Google Scholar 

  115. Teixidor i Bigas, M.: Injectivity of the symmetric map for line bundles. Manuscripta Math. 112 (4), 511–517 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  116. Thuillier, A.: Théorie du potentiel sur ler courbes en géométrie analytique non archimédienne. Applications à la theéorie d’Arakelov. Ph.D. thesis, University of Rennes (2005)

    Google Scholar 

  117. Thuillier, A.: Géométrie toroïdale et géométrie analytique non archimédienne. Manuscripta Math. 123 (4), 381–451 (2007)

    Article  MathSciNet  Google Scholar 

  118. Viviani, F.: Tropicalizing vs. compactifying the Torelli morphism. In: Tropical and Non-Archimedean Geometry. Contemporary Mathematics, vol. 605, pp. 181–210. American Mathematical Society, Providence, RI (2013)

    Google Scholar 

  119. Voisin, C.: Sur l’application de Wahl des courbes satisfaisant la condition de Brill-Noether-Petri. Acta Math. 168 (3–4), 249–272 (1992)

    Article  MathSciNet  Google Scholar 

  120. Zhang, S.: Admissible pairing on a curve. Invent. Math. 112 (1), 171–193 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Omid Amini and Sam Payne for enlightening discussions, and Eric Katz and Joe Rabinoff for helpful feedback on our summary of Katz et al. [81]. They also thank Spencer Backman, Dustin Cartwright, Melody Chan, Yoav Len, and Sam Payne for their comments on an early draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Baker, M., Jensen, D. (2016). Degeneration of Linear Series from the Tropical Point of View and Applications. In: Baker, M., Payne, S. (eds) Nonarchimedean and Tropical Geometry. Simons Symposia. Springer, Cham. https://doi.org/10.1007/978-3-319-30945-3_11

Download citation

Publish with us

Policies and ethics