Skip to main content

Energy Harvesting and Sustainable M2M Communication in 5G Mobile Technologies

  • Chapter
  • First Online:
Internet of Things (IoT) in 5G Mobile Technologies

Part of the book series: Modeling and Optimization in Science and Technologies ((MOST,volume 8))

Abstract

With the fast growth of heterogeneous low-cost and high-end mobile devices, there is a need for green designs for ubiquitous development of Internet of things (IoT) due to both health and environment concerns. Unlike other energy harvesting techniques, radio frequency (RF) energy harvesting offers controlled and predictable energy replenishment, which can aid meeting the quality of service requirements of machine-to-machine (M2M) communications. This chapter evaluates the major challenges on the feasibility of RF-powered sustainable M2M communications in 5G mobile technologies and state-of-the-art research toward their practical implementation. Strategies for improving the RF energy transfer efficiency to realize the perpetual operation of IoT are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paradiso, J., Starner, T.: Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput. 4(1), 18–27 (2005)

    Article  Google Scholar 

  2. Mishra, D., De, S., Jana, S., Basagni, S., Chowdhury, K., Heinzelman, W.: Smart RF energy harvesting communications: challenges and opportunities. IEEE Commun. Mag. 53(4), 70–78 (2015)

    Article  Google Scholar 

  3. Raghunathan, V., Kansal, A., Hsu, J., Friedman, J., Srivastava, M.B.: Design considerations for solar energy harvesting wireless embedded systems. In: Proceedings of IEEE ICNP, Los Angeles, CA, USA (2005)

    Google Scholar 

  4. Weimer, M., Paing, T., Zane, R.: Remote area wind energy harvesting for low-power autonomous sensors. In: Proceedings of IEEE Power Electronics Specialists Conference, Jeju, Korea (2006)

    Google Scholar 

  5. Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Elsevier Comput. Commun. 26(11), 1131–1144 (2003)

    Article  Google Scholar 

  6. Hagerty, J.A., Helmbrecht, F.B., McCalpin, W.H., Zane, R., Popovic, Z.B.: Recycling ambient microwave energy with broad-band rectenna arrays. IEEE Trans. Microw. Theor. Techn. 52(3), 1014–1024 (2004)

    Article  Google Scholar 

  7. Gonzalez, J., Rubio, A., Moll, F.: Human powered piezoelectric batteries to supply power to wearable electronic devices. Int. J. Soc. Mater. Eng. Res. 10(1), 34–40 (2002)

    Article  Google Scholar 

  8. De, S., Kawatra, A., Chatterjee, S.: On the feasibility of network rf energy operated field sensors. In: Proceedings of IEEE ICC, Cape Town, pp. 1–5 (2010)

    Google Scholar 

  9. Sakr, A., Hossain, E.: Cognitive and energy harvesting-based d2d communication in cellular networks: stochastic geometry modeling and analysis. IEEE Trans. Commun. 63(5), 1867–1880 (2015)

    Article  Google Scholar 

  10. De, S., Singhal, R.: Toward uninterrupted operation of wireless sensor networks. IEEE Comput. Mag. 45(9), 24–30 (2012)

    Article  Google Scholar 

  11. Powercast P1110 powerharvester receiver datasheet. http://www.powercastco.com/PDF/P1110-datasheet.pdf

  12. Mishra, D., De, S., Chowdhury, K.: Charging time characterization for wireless RF energy transfer. IEEE Trans. Circ. Syst. II Exp. Briefs 62(4), 362–366 (2015)

    Google Scholar 

  13. Weisstein, E.W.: Lambert W-Function, From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/LambertW-Function.html

  14. Shinohara, N.: Power without wires. IEEE Microw. Mag. 12(7), S64–S73 (2011)

    Article  MathSciNet  Google Scholar 

  15. Mishra, D., De, S.: Optimal relay placement in two-hop RF energy transfer. IEEE Trans. Commun. 63(5), 1635–1647 (2015)

    Article  Google Scholar 

  16. Kaushik, K., Mishra, D., De, S., Basagni, S., Heinzelman, W., Chowdhury, K., Jana, S.: Experimental demonstration of multi-hop RF energy transfer. In: Proceedings of IEEE PIMRC, London, UK, pp. 538–542 (2013)

    Google Scholar 

  17. Mishra, D., Kaushik, K., De, S., Basagni, S., Chowdhury, K., Jana, S., Heinzelman, W.: Implementation of multi-path energy routing. In: Proceedings of IEEE PIMRC, Washington D.C., USA (2014)

    Google Scholar 

  18. Nintanavongsa, P., Muncuk, U., Lewis, D., Chowdhury, K.: IEEE design optimization and implementation for RF energy harvesting circuits. J. Emerg. Sel. Top. Circ. Syst. 2(1), 24–33 (2012)

    Article  Google Scholar 

  19. Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, \(\alpha \)-BB, for general twice-differentiable constrained NLPs-I. Theor. Adv. Comput. Chem. Eng. 22(9), 1137–1158 (1998)

    Article  Google Scholar 

  20. Chen, X., Wang, X., Chen, X.: Energy-efficient optimization for wireless information and power transfer in large-scale mimo systems employing energy beamforming. IEEE Wirel. Commun. Lett. 2(6), 667–670 (2013)

    Article  Google Scholar 

  21. Quitin, F., Rahman, M.M.U., Mudumbai, R., Madhow, U.: A scalable architecture for distributed transmit beamforming with commodity radios: design and proof of concept. IEEE Trans. Wirel. Commun. 12(3), 1418–1428 (2013)

    Article  Google Scholar 

  22. Jenn, D.: Transmission equation for multiple cooperative transmitters and collective beamforming. IEEE Antennas Wirel. Propag. Lett. 7, 606–608 (2008)

    Article  Google Scholar 

  23. Michalopoulos, D., Suraweera, H., Schober, R.: Relay selection for simultaneous information transmission and wireless energy transfer: a tradeoff perspective. IEEE J. Sel. Areas Commun. 33, 1578–1594 (2015)

    Google Scholar 

  24. Naderi, M., Nintanavongsa, P., Chowdhury, K.: RF-MAC: a medium access control protocol for re-chargeable sensor networks powered by wireless energy harvesting. IEEE Trans. Wirel. Commun. 13(7), 3926–3937 (2014)

    Article  Google Scholar 

  25. Huang, K., Larsson, E.: Simultaneous information and power transfer for broadband wireless systems. IEEE Trans. Signal Process. 61(23), 5972–5986 (2013)

    Article  MathSciNet  Google Scholar 

  26. Zhang, R., Ho, C.K.: MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans. Wirel. Commun. 12(5), 1989–2001 (2013)

    Article  Google Scholar 

  27. Varshney, L.: Transporting information and energy simultaneously. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), Toronto, Canada, pp. 1612–1616 (2008)

    Google Scholar 

  28. Grover, P., Sahai, A.: Shannon meets Tesla: wireless information and power transfer. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), Austin, TX, pp. 2363–2367 (2010)

    Google Scholar 

  29. Huang, K., Lau, V.: Enabling wireless power transfer in cellular networks: architecture, modeling and deployment. IEEE Trans. Wirel. Commun. 13(2), 902–912 (2014)

    Article  Google Scholar 

  30. Krikidis, I.: Simultaneous information and energy transfer in large-scale networks with/without relaying. IEEE Trans. Commun. 62(3), 900–912 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Department of Science and Technology (DST) under Grant SB/S3/EECE/0248/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swades De .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mishra, D., De, S. (2016). Energy Harvesting and Sustainable M2M Communication in 5G Mobile Technologies. In: Mavromoustakis, C., Mastorakis, G., Batalla, J. (eds) Internet of Things (IoT) in 5G Mobile Technologies. Modeling and Optimization in Science and Technologies, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-30913-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30913-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30911-8

  • Online ISBN: 978-3-319-30913-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics