Skip to main content

Pure Elastic Contact Force Models

  • Chapter
  • First Online:
Contact Force Models for Multibody Dynamics

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 226))

Abstract

The most important pure elastic constitutive laws commonly utilized to model and analyze contact-impact events in the context of multibody mechanical system dynamics are presented in this chapter. Additionally, the fundamental issues related to the generalized contact kinematics, developed under the framework of multibody system dynamics formulation, are briefly described. In this process, the main contact parameters are determined, namely the indentation or pseudo-penetration of the potential contacting points, and the normal contact velocity. Subsequently, the linear Hooke’s contact force model and the nonlinear Hertz’s law are presented together with a demonstrative example of application. Some other elastic contact force models are also briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves J, Peixinho N, Silva MT, Flores P, Lankarani HM (2015) A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids. Mech Mach Theory 85:172–188

    Article  Google Scholar 

  • Askari E, Flores P, Dabirrahmani D, Appleyard R (2014) Study of the friction-induced vibration and contact mechanics of artificial hip joints. Tribol Int 70:1–10

    Article  Google Scholar 

  • Atkinson KA (1989) An introduction to numerical analysis, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Bei Y, Fregly BJ (2004) Multibody dynamic simulation of knee contact mechanics. Med Eng Phys 26:777–789

    Article  Google Scholar 

  • Brändlein J, Eschamann P, Hasbargen L (1998) Die Wälzlagerpraxis. Handbuch für die Berechnung und Gestaltung von Lagerungen. Vereinigte Fachverlage, Germany

    Google Scholar 

  • Dietl P, Wensing J, van Nijen GC (2000) Rolling bearing damping for dynamic analysis of multi-body systems—experimental and theoretical results. Proc Inst Mech Eng Part K J Multibody Dyn 214(1):33–43

    Article  Google Scholar 

  • Dubowsky S, Freudenstein F (1971) Dynamic analysis of mechanical systems with clearances, Part 1: Formulation of dynamic model. J Eng Ind 93:305–309

    Article  Google Scholar 

  • Flores P (2015) Concepts and Formulations for Spatial Multibody Dynamics. Springer, Berlin

    Google Scholar 

  • Flores P, Ambrósio J (2004) Revolute joints with clearance in multibody systems. Comput Struct 82:359–1369

    Article  Google Scholar 

  • Flores P, Ambrósio J (2010) On the contact detection for contact-impact analysis in multibody systems. Multibody Syst Dyn 24(1):103–122

    Article  MathSciNet  MATH  Google Scholar 

  • Flores P, Ambrósio J, Claro JCP, Lankarani HM (2006) Influence of the contact-impact force model on the dynamic response of multibody systems. Proc Inst Mech Eng Part K J Multibody Dyn 220(1):21–34

    Google Scholar 

  • Flores P, Ambrósio J, Claro JCP, Lankarani HM (2008) Translational joints with clearance in rigid multi-body systems. J Comput Nonlinear Dyn 3:0110071–10

    Article  Google Scholar 

  • Flores P, Ambrósio J, Claro JP (2004) Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst Dyn 12(1):47–74

    Article  MATH  Google Scholar 

  • Gilardi G, Sharf I (2002) Literature survey of contact dynamics modeling. Mech Mach Theory 37:1213–1239

    Article  MathSciNet  MATH  Google Scholar 

  • Glocker C (2001) On frictionless impact models in rigid-body systems. Philos Trans Math Phys Eng Sci 359:2385–2404

    Article  MathSciNet  MATH  Google Scholar 

  • Glocker C (2004) Concepts for modeling impacts without friction. Acta Mech 168:1–19

    Article  MATH  Google Scholar 

  • Goldsmith W (1960) Impact—the theory and physical behaviour of colliding solids. Edward Arnold Ltd, London, England

    MATH  Google Scholar 

  • Goodman LE, Keer LM (1965) The contact stress problem for an elastic sphere indenting an elastic cavity. Int J Solids Struct 1:407–415

    Article  Google Scholar 

  • Hertz H (1881) Über die Berührung fester elastischer Körper. J reine und angewandte Mathematik 92:156–171

    MathSciNet  Google Scholar 

  • Hippmann G (2004) An algorithm for compliant contact between complexly shaped bodies. Multibody Syst Dyn 12:345–362

    Article  MathSciNet  MATH  Google Scholar 

  • Hunt KH, Crossley FRE (1975) Coefficient of restitution interpreted as damping in vibroimpact. J Appl Mech 7:440–445

    Article  Google Scholar 

  • Johnson KL (1961) Energy dissipation at spherical surfaces in contact transmitting oscillating forces. J Mech Eng Sci 3:362–368

    Article  Google Scholar 

  • Johnson KL (1982) One hundred years of Hertz contact. Proc Inst Mech Eng 196:363–378

    Article  Google Scholar 

  • Johnson KL (1999) Contact mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Koshy CS, Flores P, Lankarani HM (2013) Study of the effect of contact force model on the dynamic response of mechanical systems with dry clearance joints: computational and experimental approaches. Nonlinear Dyn 73(1–2):325–338

    Article  Google Scholar 

  • Krempf P, Sabot J (1993) Identification of the damping in a Hertzian contact from experimental non-linear response curve. In: Proceedings of the IUTAM symposium on identification of mechanical systems. University of Wuppertal, Germany

    Google Scholar 

  • Lankarani HM (1988) Canonical equations of motion and estimation of parameters in the analysis of impact problems. PhD Dissertation, University of Arizona, Tucson, Arizona, USA

    Google Scholar 

  • Lankarani HM, Nikravesh PE (1990) A contact force model with hysteresis damping for impact analysis of multibody systems. J Mech Des 112:369–376

    Article  Google Scholar 

  • Liu C, Zhang K, Yang L (2005) The compliance contact model of cylindrical joints with clearances. Acta Mech Sin 21:451–458

    Article  MathSciNet  MATH  Google Scholar 

  • Liu C, Zhang K, Yang L (2006) Normal force-displacement relationship of spherical joints with clearances. J Comput Nonlinear Dyn 1:160–167

    Article  Google Scholar 

  • Liu C, Zhang K, Yang R (2007) The FEM analysis and approximate model for cylindrical joints with clearances. Mech Mach Theory 42:183–197

    Article  MATH  Google Scholar 

  • Lopes DS, Silva MT, Ambrósio JA, Flores P (2010) A mathematical framework for rigid contact detection between quadric and superquadric surfaces. Multibody Syst Dyn 24(3):255–280

    Article  MathSciNet  MATH  Google Scholar 

  • Luo L, Nahon M (2011) Development and validation of geometry-based compliant contact models. J Comput Nonlinear Dyn 6:0110041–11

    Article  Google Scholar 

  • Machado M, Flores P, Ambrósio J (2014) A lookup-table-based approach for spatial analysis of contact problems. J Comput Nonlinear Dyn 9(4):041010

    Article  Google Scholar 

  • Machado M, Flores P, Ambrósio J, Completo A (2011) Influence of the contact model on the dynamic response of the human knee joint. Proc Inst Mech Eng Part K J Multibody Dyn 225(4):344–358

    Google Scholar 

  • Machado M, Flores P, Claro JCP, Ambrósio J, Silva M, Completo A, Lankarani HM (2010) Development of a planar multi-body model of the human knee joint. Nonlinear Dyn 60:459–478

    Article  MATH  Google Scholar 

  • Machado M, Moreira P, Flores P, Lankarani HM (2012) Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory. Mech Mach Theory 53:99–121

    Article  Google Scholar 

  • Mukras S, Mauntler A, Kim NH, Schmitz TL, Sawyer WG (2010) Evaluation of contact force and elastic foundation models for wear analysis of multibody systems. In: Proceedings of the ASME 2010 international design engineering technology conferences. Montreal, Quebec, Canada, Paper No: DETC2010-28750, 15–18 Aug

    Google Scholar 

  • Nijen G (1997) On the overrolling of local imperfections in rolling bearings. Ph.D. Dissertation, University of Twente, The Netherlands

    Google Scholar 

  • Nikravesh PE (1988) Computer-aided analysis of mechanical systems. Prentice Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Pereira CM, Ramalho AL, Jmbrósio JA (2011) A critical overview of internal and external cylinder contact force models. Nonlinear Dyn 63:681–697

    Article  Google Scholar 

  • Pérez-González A, Fenollosa-Esteve C, Sancho-Bru JL, Sánchez-Marín FT, Vergara M, Rodríguez-Cervantes PJ (2008) A modified elastic foundation contact model for application in 3D models of the prosthetic knee. Med Eng Phys 30(3):387–398

    Article  Google Scholar 

  • Pombo J, Ambrósio J (2008) Application of a wheel-rail contact model to railway dynamics in small radius curved tracks. Multibody Syst Dyn 19(1–2):91–114

    Article  MATH  Google Scholar 

  • Ravn P (1998) A continuous analysis method for planar multibody systems with joint clearance. Multibody Syst Dyn 2:1–24

    Article  MATH  Google Scholar 

  • Sabot J, Krempf P, Janolin C (1998) Nonlinear vibrations of a sphere-plane contact excited by a normal load. J Sound Vib 214:359–375

    Article  Google Scholar 

  • Shigley JE, Mischke CR (1989) Mechanical engineering design. McGraw-Hill, New York

    Google Scholar 

  • Shivaswamy S (1997) Modeling contact forces and energy dissipation during impact in multibody mechanical systems. Ph.D. Dissertation, Wichita State University, Wichita, Kansas, USA

    Google Scholar 

  • Tian Q, Liu C, Machado M, Flores P (2011) A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn 64:25–47

    Article  MATH  Google Scholar 

  • Tian Q, Zhang Y, Chen L, Flores P (2009) Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput Struct 87(13–14):913–929

    Article  Google Scholar 

  • Timoshenko SP, Goodier JN (1970) Theory of elasticity. McGraw Hill, New York

    MATH  Google Scholar 

  • Yang DCH, Sun ZS (1985) A rotary model for spur gear dynamics. J Mech Transmissions Autom Des 107:529–535

    Article  Google Scholar 

  • Zhu SH, Zwiebel S, Bernhardt G (1999) Theoretical formula for calculating damping in the impact of two bodies in a multibody system. Proc Inst Mech Eng, Part C J Mech Eng Sci 213:211–216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Flores .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Flores, P., Lankarani, H.M. (2016). Pure Elastic Contact Force Models. In: Contact Force Models for Multibody Dynamics. Solid Mechanics and Its Applications, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-30897-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30897-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30896-8

  • Online ISBN: 978-3-319-30897-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics