Advertisement

Chemists in the Period of the Institute for Higher Practical Studies and Specialization (1859–1924)

  • Marco FontaniEmail author
  • Mary Virginia Orna
  • Mariagrazia Costa
Chapter
  • 233 Downloads
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

Another cornerstone of higher education in Florence emerged in 1859 when the Provisional Government of Tuscany, led by Baron Bettino Ricasoli, established the Institute of Practical Higher Studies and Specialization on 22 December naming Marquis Gino Capponi (1792–1876) as Superintendent. The mission of the Institute was twofold: professional training and specialization. The aim of this institution was to make Florence the capital of Italian culture in anticipation of national independence; so the Institute had to have Chairs of disciplines that would be important to the new nation, held by the most competent and professional educators. Supporters of the Institute were intent upon its achieving constant dialogue between the “Sciences of the Spirit” and the “Sciences of Nature.” To accomplish this, four schools were established: Philology and Philosophy, Forensic Science, Natural Sciences, and Medicine and Surgery, aimed at educating young people beyond the limits of university studies and encouraging them in true creativity.

Keywords

Schiff Base Nobel Prize Italian Chemical Nobel Laureate Cyanogen Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kajal A et al (2013) Schiff bases: a versatile pharmacophore. J Catal Article ID 893512, 14 p. doi: 10.1155/2013/89351
  2. 2.
    Fontani M, Costa M (2010) Allievi di un ingombrante maestro: Mario Betti e Adriano Ostrogovich. La Chimica e l’Industria 6:116Google Scholar
  3. 3.
    Fontani M, Costa M (2007) Un demonio alla Specola. Microstoria 52:62–63Google Scholar
  4. 4.
    Saccardi P (1969) Typed manuscript held at the department of chemistry “Ugo Schiff”. University of Florence; cataloguing in processGoogle Scholar
  5. 5.
    Doctoral degrees were not issued in Italy until 1980. Research over a period of time with a master chemist was the equivalent prior to that timeGoogle Scholar
  6. 6.
    Tóth D (2010) PhD thesis: synthesis and stereochemistry of new naphthoxazine derivatives. Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, HungaryGoogle Scholar
  7. 7.
    Betti M (1900) On the addition of benzylamine to naphthol. Gazz Chim Ital 30(2):301–309Google Scholar
  8. 8.
    Betti M (1903) Sulla formazione delle basi β-naftolaldaminiche. Gazz Chim Ital 33(1):1–17Google Scholar
  9. 9.
    Betti M (1901) Reazione generale di condensazione fra β-naftolo, aldeidi e amine. Gazz Chim Ital 31(2):170–184Google Scholar
  10. 10.
    Betti M (1901) Sull’azione di basi aldeido-aminiche ai naftoli. Gazz Chim Ital 31(2):191–200Google Scholar
  11. 11.
    Betti M (1930) Optical rotatory power and chemical constitution. Trans Faraday Soc 26:337–347CrossRefGoogle Scholar
  12. 12.
    Betti M, Lucchi E (1938) Untersuchungen über asymmetrische Katalyse. Absolute asymmetrische Synthese. Atti X congr chim 2:112–116Google Scholar
  13. 13.
    Betti, taking up Louis Pasteur’s original hypothesis of 1884 in which he proposed that asymmetric synthesis or decomposition could be achieved by asymmetric forms of energy, utilized circularly polarized light to accomplish an asymmetric synthesis for the first time. The originality of his procedure was his reliance on gaseous reactants in order to eliminate the appreciable intermolecular forces present in liquidsGoogle Scholar
  14. 14.
    Betti M (1941) Chimica organica e vitalismo. Reale Accademia Lucchese di scienze, lettere ed arti, Scuola Tipografico Artigianelli: Lucca, p 19Google Scholar
  15. 15.
    Betti M, Bonino GB (1933) Le acque minerali dell’Alto Adige e del Trentino: indagini chimiche e chimico-fisiche, Estratti: Memorie della Classe di scienze fisiche, matematiche e naturali. Reale Accademia d’Italia, RomaGoogle Scholar
  16. 16.
    Betti M, Bonino GB (1937) Le acque termali dei Bagni di Lucca. Tipografia Togneri, Borgo A MozzanoGoogle Scholar
  17. 17.
    Betti M, Lucchi E (1940) Catalisi asimmetrica. Asimmetria indotta con l’impiego di reattivi di Grignard, Boll Sci Fac Chim Ind Bologna (1–2):2–5Google Scholar
  18. 18.
    Rosini G (2003) In margine al conferimento della Laurea ad honorem a Royoji Noyori: un’escursione nel passato della chimica bolognese sulle orme di Mario Betti ed Elio Lucchi. Rendiconti Accademia Nazionale delle Scienze detta dei XL 121(27):99–133Google Scholar
  19. 19.
    Betti M, Lucchi E (1942) Ricerche sulla sintesi asimmetrica assoluta. Memorie Accad Sci Istituto di Bologna 9(9):203Google Scholar
  20. 20.
    Cardellicchio C, Capozzi MAM, Naso F (2010) The Betti base: the awakening of a sleeping beauty. Tetrahedron Asymmetry 21(5):507–517CrossRefGoogle Scholar
  21. 21.
    Istrati CI, Ostrogovich A (1899) Sur la Cerine et la Friedeline. Compt Rend 128:1581–1584Google Scholar
  22. 22.
    Chevreul ME (1807) De l’action de l’acide nitrique sur le liège. Ann Chim 62:323–333Google Scholar
  23. 23.
    Corey EJ, Ursprung JJ (1956) The structures of the Triterpenes Friedelin and Cerin. J Am Chem Soc 78:5041–5051. (Structures finally resolved by the work of Corey and Ursprung)Google Scholar
  24. 24.
    Ostrogovich A (1898) Sulla metildiossitriazina. Gazz Chim Ital 27(2):416–429Google Scholar
  25. 25.
    Drake NL, Shrader SA (1935) Cerin and Friedelin. II. Some Functional Derivatives. J Am Chem Soc 57:1854–1856 carried out two decades earlier. (based upon pioneering work by Drake)Google Scholar
  26. 26.
    Ostrogovich A, Ostrogovich G (1936) γ-Triazine XXXII. Idrogenazione catalitica del gruppo delle γ-Triazine I. Gazz Chim Ital 66:48–57Google Scholar
  27. 27.
    Ostrogovich A, Ostrogovich G (1936) γ-Triazine XXXII. Idrogenazione catalitica del gruppo delle γ-Triazine II. Gazz Chim Ital 66:850Google Scholar
  28. 28.
    Ostrogovich A, Ostrogovich G (1936) γ-Triazine XXXVII. Cicloetilidenebiureto. Gazz Chim Ital 68:688–698Google Scholar
  29. 29.
    Petrishov Ostrogovich A (1914) Nuovo metodo per una rapida determinazione dei grassi nella cera d’api. Giorn farm Chim 63:353Google Scholar
  30. 30.
    See, for example, his 1907 patent for the process of extracting indulin colors: http://www.google.com/patents/US900302. Accessed 17 Dec 2015
  31. 31.
    Ostrogovich A, Silbermann T (1907) Une explication de la formation des colorants de quinoneimide par oxydation des amines. Buletinul Societatii Stiinte 15:281–302Google Scholar
  32. 32.
    Ostrogovich A, Bena MV (1942) Dinaphthalylhydrazine ou binaphthalimyl. Bulletin de la Section Scientifique de l’Academie Roumaine 25:90–95Google Scholar
  33. 33.
    Ostrogovich A (1929) Benzoylbiuret et son transformation in phenyldihydroxy-γ-triazine. Buletinul Societatii de Stiinte din Cluj 4:521–527Google Scholar
  34. 34.
    Ostrogovich A, Gheorghiu Gh (1932) γ-Triazine XXIII. Sintesi dell’isobutildiammino-γ-triazina e dell’isoamildiamminoγ-triazina. Gazz Chim Ital 62:317–332Google Scholar
  35. 35.
    Ostrogovich A, Galea V (1930) γ-Triazine. Sintesi di due aralchilammino-tioltraizine. Atti Accad Naz Lincei Cl Sci Fis Mat Nat Rend 12:162–165Google Scholar
  36. 36.
    Ostrogovich A, Galea V (1930) γ-Triazine. Sintesi di arilammino-tioltriazine. Atti Accad Naz Lincei Cl Sci Fis Mat Nat Rend 11:1108–1116Google Scholar
  37. 37.
    Ostrogovich A (1935) Apparati di Laboratorio. Annali di Chimica Applicata 25:563–568Google Scholar
  38. 38.
  39. 39.
    Costa M, Fontani M (2000) La Store House Ugo Schiff. 64, Riassunti delle Comunicazioni della Riunione Scientifica della Soc. Chim. Italiana – Sez. – Toscana, Siena 15 Dic. 64Google Scholar
  40. 40.
    Costa M, Manzelli P, Tamburini C (2000) Atti del seminario internazionale di studi Ugo Schiff e la chimica a Firenze: 17 ottobreGoogle Scholar
  41. 41.
    Tidwell TT (2007) Hugo (Ugo) Schiff, Schiff bases, and a century of β-Lactam synthesis. Angew Chem Int Ed 46:2–7CrossRefGoogle Scholar
  42. 42.
  43. 43.
    The “habilitation” is a degree beyond the research doctorate which qualifies an individual to independently supervise doctoral research theses. It is the highest qualification that a scholar can receive in many European countriesGoogle Scholar
  44. 44.
    Schiff R, Viciani G (1897) Beobachtungun über Isoxazolone. Gazz Chim Ital 27(II):70–72Google Scholar
  45. 45.
    Schiff R (1881) Cenno sul fenol ottenuto per l’azione del cloruro di zinco sulla bromo canfora. Gazz Chim Ital 11:532–533Google Scholar
  46. 46.
    Schiff R, Tarugi NP (1894) Ausschluss des Schwefelwasserstoffstroms aus der qualitativen Analyse. Dessen Ersatz durch Thioessigs äure. Ber Dtsch Chem Ges 27:3437–3439CrossRefGoogle Scholar
  47. 47.
    Schiff R (1874) Ueber die Einwirkung von Bromallyl auf salpetrigsaures Silber. Ber Dtsch Chem Ges 7:1141–1145CrossRefGoogle Scholar
  48. 48.
    Bianchi G, Schiff R (1911) Reazione generale di addizione di aralchiliden-uretani a composti β-dicarbonilici. Gazz Chim Ital 41(II):81–93Google Scholar
  49. 49.
    Fontani M, Costa M (2011) La dinastia degli Schiff e l’Italia. La Chimica e l’Industria. 1:126–130Google Scholar
  50. 50.
    Flora S (1982) La collezione Schiff-Giorgini dell’Università di Pisa. Nistri-Lischi & Pacini, PisaGoogle Scholar
  51. 51.
    Pesiri G, Procaccia M, Reale E, Tascini IP, Vallone L (eds) (2009) Archivi di Famiglie e di Persone Materiali per una guida Vol. III, Toscana—Veneto, Pubblicazioni degli Archivi di Stato strumenti CLXXXIII. Ministero per i beni e le attività culturali, Direzione generale per gli archivi, FirenzeGoogle Scholar
  52. 52.
    Fileti M, Piccini A (1879) Sopra una singolare decomposizione del cloridrato di feniletilamina. Ber Dtsch Chem Ges 12:1308CrossRefGoogle Scholar
  53. 53.
    Piccini A (1896) Die Superoxyde in Beziehung zu dem periodischen System der Elemente. Z Anorg Chem 12:169–179CrossRefGoogle Scholar
  54. 54.
    Melikov PG, Pisarževskij L (1898) Hyperoxyde. Z Anorg Chem 18:59–65CrossRefGoogle Scholar
  55. 55.
    Melikov PG, Pisarževskij L (1898) Salts of pertungstic and permolybdic acids. Ber Dtsch Chem Gesell 31:632–636CrossRefGoogle Scholar
  56. 56.
    Melikov PG, Pisarževskij L (1898) Permolybdate. Ber Dtsch Chem Gesell 31:2448–2451CrossRefGoogle Scholar
  57. 57.
    Melikov PG, Pisarževskij L (1899) Das Lanthanbyperoxyd. Z Anorg Chem 21:70–72CrossRefGoogle Scholar
  58. 58.
    Piccini A (1896) Die Refraktionsindizes der einzelnen Alaune. L’Orosi 19:325–330Google Scholar
  59. 59.
    Piccini A (1896) Ueber die Alaune des Vanadintrioxyds [und –sesquioxyds]. Z Anorg Chem 11:106–115CrossRefGoogle Scholar
  60. 60.
    Piccini A (1895) Sugli allumi di sesquiossido di titanio. Gazz Chim Ital 25(II):542–543Google Scholar
  61. 61.
    Piccini A (1898) Ueber die Alaune des Titansesquioxyds. Anhang: Notiz über die Manganalaune. Z Anorg Chem 17:355–362CrossRefGoogle Scholar
  62. 62.
    Piccini A, Marino L (1901) Ueber die Alaune des Rhodiums. Anhang: Trennung des Rhodiums vom Iridium. Z Anorg Chem 27:62–71CrossRefGoogle Scholar
  63. 63.
    Piccini A (1899) Ueber den Mangancäsiumalaun. Z Anorg Chem 20:12–15CrossRefGoogle Scholar
  64. 64.
    Piccini A, Fortini V (1902) Über die Thalliumsexquioxydalaune. Z Anorg Chem 31:451–453CrossRefGoogle Scholar
  65. 65.
    Piccini A (1887) Su di un nuovo grado di ossidazione del tallio. Nota preliminare. Gazz Chim Ital 17:450–452Google Scholar
  66. 66.
    Rolla L, Fernandes L (1926) Ricerche sopra l’elemento a numero atomico 61 (nota 1). Gazz Chim Ital 56:435–436Google Scholar
  67. 67.
    Fontani M, Costa M (2009) De reditu eorum: Sulle tracce degli elementi scomparsi. Società Chimica Italiana, Roma, pp 325–327Google Scholar
  68. 68.
    Guareschi I (ed) (1906) Nuova enciclopedia di Chimica, (1906-1927). Unione Tipografico-Editrice Torinese, TorinoGoogle Scholar
  69. 69.
    Piccini A (1898) Das periodische System von Mendelejeff und die neuen Bestandteile der Luft. L’Orosi 21:361–371Google Scholar
  70. 70.
    Piccini A (1899) Il sistema periodico di Mendelejeff e i nuovi componenti dell’aria. Z Anorg Chem 19:295–305CrossRefGoogle Scholar
  71. 71.
    Werner A (1905) Beitrag zum Ausbau des periodisches Systems. Ber Dtsch Chem Ges 38:914–921CrossRefGoogle Scholar
  72. 72.
    Piccini A (1905) Osservazione ad una memoria del Prof. Werner. Gazz Chim Ital 35(II):417–421Google Scholar
  73. 73.
    Piccini A (1895) Löslichkeit des grünen Chromchlorids. L’Orosi 17:329–334Google Scholar
  74. 74.
    Werner A, Gubser A (1901) Ueber die Hydrate des Chromchlorids. Ber Dtsch Chem Ges 34:1579–1604CrossRefGoogle Scholar
  75. 75.
    Mazza L, Piccini E (1923) Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti 32(II):406–410Google Scholar
  76. 76.
    Giorgio Pellizzari was professor of anatomy and pathology from 1847-89. Guido’s uncle, Pietro Pellizzari was also a renowned man of medicineGoogle Scholar
  77. 77.
    In Germany, he had as mentors Ferdinand Ritter von Hebra (1816-80), Moriz Kaposi (1837-1902), Ritter von Ilanor (1810-83) and Edler von Heilwart (1832-1906). Celso Pellizzari became very famous for his investigations on leprosy and on syphilis of the brain. In 1905 he founded the Phototherapeutic Institute for treatment of skin diseases using phototherapy and radiotherapy. For this reason, he gathered information on the possibility of treating skin tumors with radium and went to London to purchase 10 mg of radium from the W. Martindale Society, which he personally brought back to Florence in a little ebony boxGoogle Scholar
  78. 78.
    Betti, M (1939) Guido Pellizzari 1858-1938. Rendiconti della R. Accademia Nazionale dei Lincei 29(7):353–361Google Scholar
  79. 79.
    Passerini M, Pellizzari G (1938) Fonti e bibliografia. La Chimica e l’Industria 20(7):498–499Google Scholar
  80. 80.
    Pellizzari G (1911) Triazolo e i suoi derivati. Gazz Chim Ital 41(2):20–42Google Scholar
  81. 81.
    Meyer V (1883) Ueber den Begleiter des Benzols im Steinkohlenteer. Ber Dtsch Chem Ges 16:1465–1478CrossRefGoogle Scholar
  82. 82.
    Fisher E (1884) Phenylhydrasin als Reagens auf Aldeyde und Ketone. Ber Dtsch Chem Ges 17:572–582CrossRefGoogle Scholar
  83. 83.
    Guareschi I (1896) Sintesi di composti piridinici da sali eterei, acidi chetonici e cianoacetato etilico in presenza di ammoniaca o ammine. Memorie della Reale Accademia delle Scienze di Torino 46(7):11–25Google Scholar
  84. 84.
    Pellizzari G (1894) Sintesi del triazolo e dei suoi derivati. Gazz Chim Ital 24:222–229Google Scholar
  85. 85.
    Pellizzari G (1894) Guanazolo e i suoi derivati alchilici. L’Orosi 17:143–155Google Scholar
  86. 86.
    Pellizzari G (1902) Sulla formula del triazolo. Gazz Chim Ital 1902(32):189–201Google Scholar
  87. 87.
    Pellizzari G (1894) Urazolo e triazolo. Gazz Chim Ital 1894(24):499–511Google Scholar
  88. 88.
    Pellizzari G (1896) Sintesi del triazolo e dei suoi derivati. II. Derivati monosostituiti. Gazz Chim Ital 1896 26:413–429Google Scholar
  89. 89.
    Atkinson MR, Polya JB (1952) Triazoles. Part I. Unsymmetrical Einhorn–Brunner and related Pellizzari reactions. J Chem Soc 3418–3422Google Scholar
  90. 90.
    Karrer P (1950) Organic chemistry, 4th edn. Elsevier, Amsterdam, p 802Google Scholar
  91. 91.
    Bird CW, Wong CK (1974) The mechanism of the pellizzari transformation of α-cyanophenylhydrazine. Tetrahedron Lett 14:1251–1252CrossRefGoogle Scholar
  92. 92.
    Pellizzari G, Massa C (1901) Sintesi dei derivati del 1:3:4-triazolo. Atti Accad Naz Lincei Cl Sci Fis Mat Nat Rend 10:363–367Google Scholar
  93. 93.
    Pellizzari G, Massa C (1901) Sintesi dei derivati del 1.3.4-triazolo. Gazz Chim Ital 31:105–111Google Scholar
  94. 94.
    Pellizzari G, Bruzzo M (1901) Derivati monosostituiti dell’1.3.4-triazolo. Gazz Chim Ital 31:111–122Google Scholar
  95. 95.
    Pellizzari G, Alciatore A (1901) Prodotti trisostituti dell’1.3.4-triazolo. Gazz Chim Ital 31:123–132Google Scholar
  96. 96.
    Pellizzari G (1911) N-Amino-1,3,4-triazolo (tetrazolina). Gazz Chim Ital 39:520–540Google Scholar
  97. 97.
    Pellizzari G (1911) Triazolo e i suoi derivati. Gazz Chim Ital 41:20–42Google Scholar
  98. 98.
    Pellizzari G, Roncagliolo C (1901) Ricerche sul guanazolo. Gazz Chim Ital 31:477–513Google Scholar
  99. 99.
    Pellizzari G (1907) Azione degli alogenuri di cianogeno sull’idrazina. Gazz Chim Ital 37:444–449Google Scholar
  100. 100.
    Pellizzari G, Gaiter A (1914) Sulla triammino-guanidina. Gazz Chim Ital 44:78–85Google Scholar
  101. 101.
    Pellizzari G, Cantoni C (1905) Azione del bromuro di cianogeno sull’idrazina. Gazz Chim Ital 35:291–302Google Scholar
  102. 102.
    Pellizzari G (1911) Azione del bromuro di cianogeno sulla fenilidrazina. Gazz Chim Ital 41:54–59Google Scholar
  103. 103.
    Salvini, Selenida, grandniece of Guido Pellizzari. Personal communication with M. Fontani. April, 2014Google Scholar
  104. 104.
    Cambi L (1933) La memoria di Angelo Angeli. Gazz Chim Ital 63:527–560Google Scholar
  105. 105.
    “To Angelo Angeli, son of the great people of Friuli, ingenious discoverer of transforming ideas of modern chemistry, the scholars and engineers participating in the X National Chemistry Meeting convened in his native place and mindful of his imperishable work with earnest resolve placed this plaque at the house of his birth, 22 June 1968.” Friuli, located in extreme northeast Italy, is an historic region with its own cultural identity and language. Udine is its principal cityGoogle Scholar
  106. 106.
    Fontani M, Costa M (2004) Riassunti delle Comunicazioni della Riunione Scientifica della Soc. Chim. Italiana - Sez. Toscana, Pisa 17 Dic., 10Google Scholar
  107. 107.
    Angeli A (1916) The constitution of the azoxy compounds. Gazz Chim Ital 46(II):67–119Google Scholar
  108. 108.
    Benfey OT (1958) August Kekulé and the birth of the structural theory of organic chemistry in 1858. J Chem Educ 35(1):21–23CrossRefGoogle Scholar
  109. 109.
    Buncel E, Keum SR, Cygler M, Varughese KI, Birnbaum GI (1984) Studies of azo and azoxy dyestuffs. Part 17. Synthesis and structure determination of isomeric α and β phenylazoxypyridines, N-oxides and methiodides. A reexamination of the oxidation of phenylazopyridines and X-ray structure analyses of 4-(phenyl-α-azoxy)pyridinium methiodide and 4-(phenyl-β-azoxy)pyridine-N-oxide. Can J Chem 62:1628–1639CrossRefGoogle Scholar
  110. 110.
    Paolucci N, Wink DA (2009) The shy Angeli and his elusive creature: the HNO route to vasodilation. Am J Physiol Heart Circ Physiol 296(5):H1217–H1220. doi: 10.1152/ajpheart.00243.2009 CrossRefGoogle Scholar
  111. 111.
    Poggi R (1931) L’Iprite. G Chim Ind Appl 31:187–188Google Scholar
  112. 112.
    Angeli A (1924) Sopra le reazioni di alcuni derivati aromatici ed alifatici. Mem accad Lincei [5] 14:627–658Google Scholar
  113. 113.
    Fuson RC (1935) The principle of vinylogy. Chem Rev 16(1):1–27CrossRefGoogle Scholar
  114. 114.
    In via Laura, he had a little shed which he had fixed up as a sort of laboratory, but his “home” was a rented hotel roomGoogle Scholar
  115. 115.
    Angeli A (1896) Sopra la nitroidrossilammina. Gazz Chim Ital 26:17–25Google Scholar
  116. 116.
    Rimini E (1901) Sopra una nuova reazione delle aldeidi. Gazz Chim Ital 31:84–93Google Scholar
  117. 117.
    Porcheddu A, Giacomelli G (2006) Angeli-Rimini’s reaction on solid support: a new approach to hydroxamic acids. J Org Chem 71(18):7057–7059CrossRefGoogle Scholar
  118. 118.
    Liochev SI, Fridovich I (2003) The mode of decomposition of Angeli’s salt (Na2N2O3) and the effects thereon of oxygen, nitrite, superoxide dismutase, and glutathione. Free Radic Biol Med 34(11):1399–1404CrossRefGoogle Scholar
  119. 119.
    Angeli’s terminology has been replaced by different names today. His salt is referred to in the Merck Index as sodium trioxodinitrate, hyponitric acid disodium salt, sodium N-nitrohydroxylaminate, sodium α-oxyhyponitrite and sodium trioxodinitrateGoogle Scholar
  120. 120.
    O’Neil MJ, et al (eds) (2006) The merck index, 14th ed, p 648Google Scholar
  121. 121.
    Angeli A, Angelico F (1901) Reactions of nitroxyl [NOH]. J Chem Soc Abstr 80(1):322Google Scholar
  122. 122.
    Hughes MN, Wimbledon PE (1976) Chemistry of trioxodinitrates. 1. Decomposition of sodium trioxodinitrate (Angeli’s Salt) in aqueous-solution. J Chem Soc, Dalton Trans 8:703–707CrossRefGoogle Scholar
  123. 123.
    Dumond J, King SB (2011) The chemistry of nitroxyl-releasing compounds. Antioxid Redox Signal 14(9):1637–1648CrossRefGoogle Scholar
  124. 124.
    Tuscan oncologist noted for having studied immune mechanisms implicated in the pathogenesis, diagnosis, and therapy of infectious and neoplastic diseases. He was certainly one of the first to assert that pellagra was caused by a diet deficiency. He was President of the National Tumor Institute from 1935-56Google Scholar
  125. 125.
    The reason for awarding the 2014 Nobel prize for physics could be distilled into a simple two-word Latin motto, PLUS LUCIS. These two words summarize and celebrate Isamu Akasaki (b. 1929), Hiroshi Amano (b. 1960) and Shuji Nakamura (b. 1954), the three Japanese scientists who developed blue LEDs, an essential component of most modern lighting systems, portable flashlights, and Christmas tree lights, not to mention the latest generation of television screens. Their work, which was carried on in the 1990s, revolutionized lighting technology. With a blue LED you can have white light sources which are much more efficient and economical than are incandescent and neon lampsGoogle Scholar
  126. 126.
    Angeli A (1918) Sopra i neri di Pirrolo. Nota. Gazz Chim Ital 48(2):21–25Google Scholar
  127. 127.
    The authors would like to thank Prof. Seth C. Rasmussen for allowing us to examine the manuscript of his in-depth history of the pyrrole blacks while it was still in pressGoogle Scholar
  128. 128.
    Rasmussen SC (2015) Early history of polypyrrole: the first conducting organic polymer. Bull Hist Chem 40(1):45–55Google Scholar
  129. 129.
    Personal communication with one of the authors. Lia Jovine Mazza (b. 1920), personal assistant to Professor Giovanni SperoniGoogle Scholar
  130. 130.
    At the request of the Ministry of War, Angeli’s expertise was utilized at Rome for the Italian war effort from 1916 to 1921; he still held the rank of professor, but without any teaching duties. Archivio Storico dell’Università di Firenze, Faldoni anni 1916-1917-1918-1919-1920-1921, item: “Angelo Angeli”Google Scholar
  131. 131.
    Cusmano G (1916) La clorofilla. Annali di chimica applicata 5(3–4):97–117Google Scholar
  132. 132.
    Cusmano G (1919) Riduzione con platino e idrogeno dei nitrocomposti aromatici. Annali di chimica applicata 12(9–12):123–130Google Scholar
  133. 133.
    Gandini A (1956) Guido Cusmano, 1882-1956. Il Farmaco, edizione pratica 11(5):305–311Google Scholar
  134. 134.
    Mattu F (1962) Raul Poggi. Il farmaco edizione pratica 17(1):65Google Scholar
  135. 135.
    Poggi R, Polverini A (1926) The destruction of filters with oxidizing agents applied alternately in quantitative analysis. Atti Accad Naz Lincei Cl Sci Fis Mat Nat Rend 4:55–57Google Scholar
  136. 136.
    Poggi R, Niccolini P (1948) Comparative chemical and pharmacological study of sodium camphorsulfonates. Arch Int Pharmacodyn Ther 76:297–307Google Scholar
  137. 137.
    Poggi R, Sacchi S (1940) Condensation of cyclohexane and derivatives with some aromatic aldehydes. Gazz Chim Ital 70:269–273Google Scholar
  138. 138.
    Poggi R (1931) The use of unsaturated glycerols in smokeless powders. Annali di Chimica Applicata 21:500–506Google Scholar
  139. 139.
    Poggi R, Speroni G (1934) Some derivatives of selenium. Gazz Chim Ital 64:497–550Google Scholar
  140. 140.
    Angeli A, Poggi R (1928) The mobility of various halogen atoms. Atti Accad Naz Lincei Cl Sci Fis Mat Nat Rend 7:966–969Google Scholar
  141. 141.
    Poggi R (1942) Sulla utilizzazione integrale del lentisco. Chimica nell’Industria, nell’Agricoltura, nella Biologia e nelle Realizzazioni Corporative 18:173–176Google Scholar
  142. 142.
    Mattu F (1962) Raul Poggi. La Chimica e l’Industria 44(1):84–85Google Scholar
  143. 143.
    Giordani F (1939) Un grande chimico: Nicola Parravano. Soc. ital. progresso sci., Atti XXVII riunione 5(2):313–322Google Scholar
  144. 144.
    Parravano N (1936) Fascism and science: chemistry and the chemical autocracy of the nation. Chimica e l’Industria 18:333–338Google Scholar
  145. 145.
    Mazza L (1962) Annuario Accademico dell’Università di Genova del Biennio 1959-1961. F.lli Pagano, GenovaGoogle Scholar
  146. 146.
    Arcetri is a small hamlet in the hills south of Florence’s city center. It is here that Galileo Galilei lived under house arrest until his death in 1642Google Scholar
  147. 147.
    Fontani M, Costa M, Manzelli P (1997) Un elemento mancato: il florenzio. Il Chimico Italiano 1:32–38Google Scholar
  148. 148.
    Rolla L (1934) Regia Università degli Studi di Ricerca, Attività didattica e scientifica nel decennio 1924 II E.F. – 1934 XII E.F., p. 439Google Scholar
  149. 149.
    Rolla L, Mazza L (1930) Sistemi di telegrafia e di telefonia per mezzo di fasci di radiazioni infrarosse. Rendiconti R. Accademia Nazionale dei Lincei, Ser. 6, XI, p. 19–26Google Scholar
  150. 150.
    Fontani M, Orna MV (2011) Luigi Rolla un fisico camuffato da chimico, Memorie di Scienze Fisiche e Naturali. <Accademia delle Scienze detta dei XL> Atti del XIV Congresso Nazionale di Storia e Fondamenti della Chimica, pp 203–214Google Scholar
  151. 151.
    A reaction to post-Kantian positivism expressed in the works of philosophers such as Schopenhauer and KierkegaardGoogle Scholar
  152. 152.
    Forman P (1971) Weimar culture, causality, and quantum theory: adaptation by German physicists and mathematicians to a hostile environment. Hist Stud Phys Sci 3:1–115Google Scholar
  153. 153.
    Rolla L (1923) Annuario 1922-1923 del R. Istituto di Studi Superiori Pratici e di Perfezionamento in Firenze, Discorso inaugurale, p. 1Google Scholar
  154. 154.
    Engelhardt HT (1987) Scientific Controversies: Case studies in the resolution and closure of disputes in science and technology. Cambridge University Press, Cambridge, UK, p 537CrossRefGoogle Scholar
  155. 155.
    Rolla L (1923) Discorso inaugurale dell’anno accademico 1922-1923. Annuario del Reale Istituto di Studi Superiori Pratici e di Perfezionamento in Firenze, pp 1–12Google Scholar
  156. 156.
    Presumably from the “Big Bang.”Google Scholar
  157. 157.
    Rolla L (1936) Nuovi orizzonti della chimica. La Chimica e l’Industria 18(3):115–118Google Scholar
  158. 161.
    Rolla L, Mazza L (1933) Sulla radioattività del neodimio e del samario nelle miscele neodimio-samarifere. Rendiconti R. Accademia Nazionale dei Lincei, Ser. 6, XVIII, pp 472–478Google Scholar
  159. 159.
    Fontani M, Costa M, Orna MV (2015) The lost elements: the periodic table’s shadow side. Oxford University Press, New York, p 296Google Scholar
  160. 160.
    Gatterer A, Junkes J, Rolla L, Piccardi G (1942) Sugli spettri d’arco delle miscele neodimio-samario. Pontificia Academia Scientiarum. Commentationes. 6(5)Google Scholar
  161. 161.
    Marinsky JA, Glendenin LE, Coryell JD (1947) The chemical identification of radioisotopes of neodymium and of element 61. J Am Chem Soc 69:2781–2785CrossRefGoogle Scholar
  162. 162.
    145Pm is the longest-lived known isotope with a half-life of 17.7 y. Its abundance in Earth’s crust, arising from spontaneous fission of uranium, is estimated at 4.5 x 10–20 ppm, a level far too low for isolation by macroscopic methods such as fractional crystallizationGoogle Scholar
  163. 163.
    Marinsky JA (1996) The search for element 61. In: Evans CH (ed) Episodes from the history of the rare earth elements. Springer, Heidelberg, pp 91–107CrossRefGoogle Scholar
  164. 164.
    Kuroda PK (1982) The origin of the chemical elements and the Oklo phenomenon. Springer, Heidelberg, Ch. 3.10, 3.11Google Scholar
  165. 165.
    Costa M, Fontani M, Papini P, Manzelli P (1997) Storia dell’elemento 61, Memorie di Scienze Fisiche e Naturali. Accademia delle Scienze detta dei XL, 22(5) II, II, p 431Google Scholar
  166. 166.
    Fontani M, Costa M, Orna MV (2015) The lost elements: the periodic table’s shadow side. Oxford University Press, New York, p 307. (As recalled by Enzo Ferroni, a former student of Piccardi, in a 1997 interview with one of the authors and cited in)Google Scholar
  167. 167.
    Rolla L (1936) Recensione del libro “Fondamenti di meccanica atomica”. La Chimica e l’Industria 18(5):266Google Scholar
  168. 168.
    Rolla L (1936) Recensione del libro “Il nucleo atomico”. La Chimica e l’Industria 18(12):660Google Scholar
  169. 169.
    Rolla L (1950) Letter to D. Marotta, Archivio dell’Accademia dei XL, fondo Luigi Rolla, 23 May 1950Google Scholar
  170. 170.
    The Accademia dei Lincei was Italy’s most prestigious and famous scientific academy, founded in 1603. It was replaced (suppressed) during the fascist regime by the Accademia d’Italia, but in 1949, after the fall of the fascist regime, it was restoredGoogle Scholar
  171. 171.
    Rolla L (1950) Lettera conservata presso l’archivio dell’Accademia dei XL, fondo Luigi Rolla, 26 MayGoogle Scholar
  172. 172.
    Rolla L (1950) Il nome dell’elemento 61. La Chimica e l’Industria 32(4):179–180Google Scholar
  173. 173.
    Mazza L (1957) Brochure produced on the occasion of Luigi Rolla’s 75th birthday celebration. Tipografia Crovetto: Genoa, 8 pp. It contains a brief biography of Rolla, a list of participants, and the names of members of the organizing committeeGoogle Scholar
  174. 174.
    Mazza L (1960) Letter to D Marotta, Archivio dell’Accademia dei XL, fondo Luigi Rolla, 10 NovemberGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marco Fontani
    • 1
    Email author
  • Mary Virginia Orna
    • 2
  • Mariagrazia Costa
    • 1
  1. 1.Department of Chemistry “Ugo Schiff”University of FlorenceSesto FiorentinoItaly
  2. 2.Department of ChemistryCollege of New RochelleNew RochelleUSA

Personalised recommendations