Skip to main content

Epistructural Dynamics of Biological Water

  • Chapter
  • First Online:
Physics at the Biomolecular Interface

Part of the book series: Soft and Biological Matter ((SOBIMA))

  • 787 Accesses

Abstract

Adopting the methods of epistructural physics previously developed, this chapter unravels dynamic singularities of the protein-water interface. It is shown that interfacial water in the vicinity of protein dehydrons is subject to a torque resulting from the breakdown of the Debye dielectric picture. This non-Debye torque accelerates interfacial water molecules beyond the kinetic energies characteristic of the bulk. The epistructural dynamic analysis highlights a link between the protein structural deficiencies and the defects of the aqueous interface. Thus, the tightness of the hydration shell is modulated by the mobility of interfacial water that varies widely becoming a maximum at dehydron locations. Interfacial water molecules subject to the non-Debye torque enhance the propensity for protein associations and raise their catalytic rate as proton acceptors by increasing the frequency of effective collisions. The most pronounced de-wetting propensity at the interface is promoted by dehydrons on the surface of soluble proteins. The result has crucial implications for the drug designer since ligands may be engineered to expel labile interfacial patches upon association. Furthermore, subtle differences in the interfacial dynamic singularities within a protein family may be exploited to promote drug specificity. This finding is of significance to the pharmaceutical industry since homologous proteins are known to share a common structural topology and therefore, discriminatory molecular recognition remains a daunting challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Otting G, Liepinsh E, Wüthrich K. Protein hydration in aqueous solution. Science. 1991;254:974–80.

    Article  ADS  Google Scholar 

  2. Qiu W, Kao Y, Zhang L, et al. Protein surface hydration mapped by site-specific mutations. Proc Natl Acad Sci U S A. 2006;103:13979–84.

    Article  ADS  Google Scholar 

  3. Makarov V, Andrews BV, Smith PE, Pettitt BM. Residence times of water molecules in the hydration sites of myoglobin. Biophys J. 2000;79:2966–74.

    Article  Google Scholar 

  4. Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature. 2005;437:640–7.

    Article  ADS  Google Scholar 

  5. Cheng Y, Rossky PJ. Surface topography dependence of biomolecular hydrophobic hydration. Nature. 1998;392:696–9.

    Article  ADS  Google Scholar 

  6. Liu P, Huang X, Zhou R, Berne BJ. Observation of a dewetting transition in the collapse of the melitin tetramer. Nature. 2005;437:159–62.

    Article  ADS  Google Scholar 

  7. Fernández A, Scheraga HA. Insufficiently dehydrated hydrogen bonds as determinants of protein interactions. Proc Natl Acad Sci U S A. 2003;100:113–8.

    Article  ADS  Google Scholar 

  8. Fernández A, Kardos J, Scott R, Goto Y, Berry RS. Structural defects and the diagnosis of amyloidogenic propensity. Proc Natl Acad Sci U S A. 2003;100:6446–51.

    Article  ADS  Google Scholar 

  9. Hetenyi C, van der Spoel D. Blind docking of drug-sized compounds to proteins with up to a thousand residues. FEBS Lett. 2006;580:1447–50.

    Article  Google Scholar 

  10. Fernández A, Berry RS. Molecular dimension explored in evolution to promote proteomic complexity. Proc Natl Acad Sci U S A. 2004;101:13460–5.

    Article  ADS  Google Scholar 

  11. Fernández A, Scott RL. Dehydron: a structurally encoded signal for protein interaction. Biophys J. 2003;85:1914–28.

    Article  Google Scholar 

  12. Fernández A, Scott LR. Adherence of packing defects in soluble proteins. Phys Rev Lett. 2003;91:018102.

    Article  ADS  Google Scholar 

  13. Yu H, Rosen MK, Schreiber SL. 1H and 15N assignments and secondary structure of the Src SH3 domain. FEBS Lett. 1993;324:87–92.

    Article  Google Scholar 

  14. Vijay-Kumar S, Bugg CE, Cook WJ. Structure of ubiquitin refined at 1.8 angstrom resolution. J Mol Biol. 1987;194:531–44.

    Article  Google Scholar 

  15. van der Spoel D, van Maaren P, Larsson P, Timneanu N. Thermodynamics of hydrogen bonding in hydrophilic and hydrophobic media. J Phys Chem B. 2006;110:4393–8.

    Article  Google Scholar 

  16. Sheu S, Yang D, Selzle H, Schlag EW. Energetics of hydrogen bonds in peptides. Proc Natl Acad Sci U S A. 2003;100:12683–7.

    Article  ADS  Google Scholar 

  17. Rizzo RC, Jorgensen WL. OPLS All-atom model for amines: resolution of the amine hydration problem. J Am Chem Soc. 1999;121:4827–36.

    Article  Google Scholar 

  18. Jorgensen WL, Chandrasekhar J, Madura J, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–35.

    Article  ADS  Google Scholar 

  19. Lindahl E, Hess B, Van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model. 2001;7:302–17.

    Google Scholar 

  20. Fernández A, Chen J, Crespo A. Solvent-exposed backbone loosens the hydration shell of soluble folded proteins. J Chem Phys. 2007;126:245103.

    Article  ADS  Google Scholar 

  21. Denisov V, Halle B. Protein hydration dynamics in aqueous solution. A comparison of bovine pancreatic trypsin inhibitor and ubiquitin by oxygen-17 spin relaxation dispersion. J Mol Biol. 1995;245:682–97.

    Article  Google Scholar 

  22. Lum K, Chandler D, Weeks JD. Hydrophobicity at small and large length scales. J Phys Chem B. 1999;103:4570–7.

    Article  Google Scholar 

  23. Mason PE, Neilson GW, Dempsey CE, Barnes AC, Cruickshank JM. The hydration structure of guanidinium and thiocyanate ions: implications for protein stability. Proc Natl Acad Sci U S A. 2003;100:4557–61.

    Article  ADS  Google Scholar 

  24. Kocher JP, Prevost M, Wodak S, Lee B. Properties of the protein matrix revealed by the free energy of cavity formation. Structure. 1996;4:1517–29.

    Article  Google Scholar 

  25. Fernández A, Sosnick TR, Colubri A. Dynamics of hydrogen-bond desolvation in folding proteins. J Mol Biol. 2002;321:659–75.

    Article  Google Scholar 

  26. Schutz CN, Warshel A. What are the dielectric “constants” of proteins and how to validate electrostatic models? Proteins Struct Funct Gen. 2001;44:400–8.

    Article  Google Scholar 

  27. Fernández A. Fast track communication: water promotes the sealing of nanoscale packing defects in folding proteins. J Phys Condens Matter. 2014;26:202101.

    Article  Google Scholar 

  28. Pearlstein RA, Sherman W, Abel R. Contributions of water transfer energy to protein-ligand association and dissociation barriers: watermap analysis of a series of p38α MAP kinase inhibitors. Proteins. 2013;81:1509–26.

    Article  Google Scholar 

  29. Weiss GA, Watanabe CK, Zhong A, Goddard A, Sidhu SS. Rapid mapping of protein functional epitopes by combinatorial alanine scanning. Proc Natl Acad Sci U S A. 2000;97:8950–4.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernández, A. (2016). Epistructural Dynamics of Biological Water. In: Physics at the Biomolecular Interface. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-30852-4_4

Download citation

Publish with us

Policies and ethics