Skip to main content

Structure-Based Drug Discovery Without Structure: Working Around the Paradox to Disrupt Protein-Protein Associations

  • Chapter
  • First Online:
Physics at the Biomolecular Interface

Part of the book series: Soft and Biological Matter ((SOBIMA))

  • 794 Accesses

Abstract

Drug discovery has been focusing for some time on protein-protein (PP) associations, the basic molecular events in biology. The recruitment of protein complexes is required to initiate and propagate signaling cascades, regulate enzyme activity, articulate and control mechanistic processes involving molecular motors, etc. When such associations engage altered binding partners, complex formation may lead to deregulation of biological functions and the drug-based disruption of the aberrant associations may represent new therapeutic opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Structure-based design of inhibitors of protein-protein interactions: mimicking peptide binding epitopes. Angew Chem Int Ed Engl. 2015;54:8896–927.

    Article  Google Scholar 

  2. Wells JA, McClendon CL. Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature. 2007;450:1001–9.

    Article  ADS  Google Scholar 

  3. Nero TL, Morton CJ, Holien JK, Wielens J, Parker MW. Oncogenic protein interfaces: small molecules, big challenges. Nat Rev Cancer. 2014;14:248–62.

    Article  Google Scholar 

  4. Arkin MR, Tang Y, Wells JA. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol. 2014;21:1102–14.

    Article  Google Scholar 

  5. Hwang H, Vreven T, Janin J, Weng Z. Protein-protein docking benchmark version 4.0. Proteins. 2010;78:3111–4.

    Article  Google Scholar 

  6. Khoo KH, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov. 2014;13:217–36.

    Article  Google Scholar 

  7. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA. In vivo activation of the p53 pathway by small molecule antagonists of MDM2. Science. 2004;303:844–8.

    Article  ADS  Google Scholar 

  8. Fry DC. Small-molecule inhibition of protein-protein interactions: how to mimic a protein partner. Curr Pharm Des. 2012;18:4679–84.

    Article  Google Scholar 

  9. Kouadio JL, Horn JR, Pal G, Kossiakoff AA. Shotgun alanine scanning shows that growth hormone can bind productively to its receptor through a drastically minimized interface. J Biol Chem. 2005;280:25524–32.

    Article  Google Scholar 

  10. King C, Garza EN, Mazor R, Linehan JL, Pastan I, Pepper M, Baker D. Removing T-cell epitopes with computational protein design. Proc Natl Acad Sci U S A. 2014;111:8577–82.

    Article  ADS  Google Scholar 

  11. Erlanson DA, Wells JA, Braisted AC. Tethering fragment-based drug discovery. Annu Rev Biophys Biomol Struct. 2004;33:199–223.

    Article  Google Scholar 

  12. Winter A, Higueruelo AP, Marsh M, Sigurdardottir A, Pitt WR, Blundell TL. Biophysical and computational fragment-based approaches to targeting protein-protein interactions: applications in structure-guided drug discovery. Q Rev Biophys. 2012;45:383–426.

    Article  Google Scholar 

  13. Fernández A. Epistructural tension promotes protein associations. Phys Rev Lett. 2012;108:188102.

    Article  ADS  Google Scholar 

  14. Fernández Stigliano A. Biomolecular interfaces: interactions, functions and drug design, Chap. 5. Heidelberg: Springer; 2015.

    Book  Google Scholar 

  15. Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta. 2010;1804:996–1010.

    Article  Google Scholar 

  16. Fernández A. Communication: chemical functionality of interfacial water enveloping nanoscale structural defects in proteins. J Chem Phys. 2014;140:221102.

    Article  ADS  Google Scholar 

  17. Fernández A. Packing defects functionalize soluble proteins. FEBS Lett. 2015;589:967–73.

    Article  Google Scholar 

  18. Moss R, Fernández A. Inhibition of MyBP-C binding to myosin as a treatment for heart failure, US patent 9,051,387; 2015.

    Google Scholar 

  19. Previs MJ, Beck Previs S, Gulick J, Robbins J, Warshaw DM. Molecular mechanics of cardiac myosin-binding protein c in native thick filaments. Science. 2012;337:1215–8.

    Article  ADS  Google Scholar 

  20. Colson BA, Bekyarova T, Fitzsimons DP, Irving TC, Moss RL. Radial displacement of myosin cross-bridges in mouse myocardium due to ablation of myosin binding protein-C. J Mol Biol. 2007;367:36–41.

    Article  Google Scholar 

  21. Fernández Stigliano A. Biomolecular interfaces: interactions, functions and drug design, Chap. 1. Heidelberg: Springer; 2015.

    Book  Google Scholar 

  22. Pietrosemoli N, Crespo A, Fernández A. Dehydration propensity of order–disorder intermediate regions in soluble proteins. J Proteome Res. 2007;6:3519–26.

    Article  Google Scholar 

  23. Fraser CM, Fernández A, Scott LR. WRAPPA: a screening tool for candidate dehydron identification. University of Chicago, Department of Computer Science Technical Report TR-2011-05. 2011. http://www.cs.uchicago.edu/research/publications/techreports/TR-2011-05.

  24. Fernández Stigliano A. Biomolecular interfaces: interactions, functions and drug design, Appendix 1: Code for dehydron identification. Heidelberg: Springer; 2015.

    Google Scholar 

  25. Chen J, Zhang X, Fernández A. Molecular basis for specificity in the druggable kinome: sequence-based analysis. Bioinformatics. 2007;23:563–72.

    Article  Google Scholar 

  26. Chen J, Liang H, Fernández A. Protein structure protection commits gene expression patterns. Genome Biol. 2008;9:R107.

    Article  Google Scholar 

  27. Zeng Z, Shi H, Wu Y, Hong Z. Survey of natural language processing techniques in bioinformatics. Comp Math Methods Med. 2015;2015:674296.

    Google Scholar 

  28. Fernández Stigliano A. Biomolecular interfaces: interactions, functions and drug design, Chap. 5. Heidelberg: Springer; 2015.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernández, A. (2016). Structure-Based Drug Discovery Without Structure: Working Around the Paradox to Disrupt Protein-Protein Associations. In: Physics at the Biomolecular Interface. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-30852-4_16

Download citation

Publish with us

Policies and ethics