Skip to main content

Epistructure-Based Design of Drugs with Controlled Promiscuity

  • Chapter
  • First Online:
Physics at the Biomolecular Interface

Part of the book series: Soft and Biological Matter ((SOBIMA))

  • 790 Accesses

Abstract

The complex etiology of cancer has inspired drug developers to seek multi-pronged molecular targeted therapies. The one-disease-one-target paradigm, illustrated by chronic myeloid leukemia (CML) and the chimeric product Bcr-Abl, a resultant of aberrant chromosomal translocation, is representative of the exception rather than the rule in cancer therapeutics. On the other hand, multi-drug treatments, with their diverse and often incompatible pharmacodynamics and pharmacokinetics profiles, do not offer attractive therapeutic possibilities for a multi-pronged attack, except in the context of therapeutic editing and reciprocal therapeutic editing delineated in Chaps 12 and 17, respectively. Fueled by the output of systems biology, the burgeoning interest in multi-target drugs is motivating a re-assessment of the therapeutic value of controlled promiscuity. While drug efficacy may not correlate with specificity, it would be risky to take the opposite stance and welcome promiscuous compounds indiscriminately, without a rational strategy to funnel their therapeutic impact. In this chapter we survey epistructure-based approaches to control the therapeutic impact of multi-target kinase inhibitors to fulfill the therapeutic imperatives of human cancer. Thus, we advocate for the application of wrapping design to turn multi-target kinase inhibitors into clinical opportunities through judicious chemical modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dancey J, Sausville EA. Issues and progress with protein kinase inhibitors for cancer treatment. Nat Rev Drug Discov. 2003;2:296–313.

    Article  Google Scholar 

  2. Levitski A, Gazit A. Tyrosine kinase inhibition: an approach to drug development. Science. 1995;267:1782–8.

    Article  ADS  Google Scholar 

  3. Tibes R, Trent J, Kurzrock R. Tyrosine kinase inhibitors and the dawn of molecular cancer therapeutics. Annu Rev Pharmacol Toxicol. 2005;45:357–84.

    Article  Google Scholar 

  4. Gibbs J, Oliff A. Pharmaceutical research in molecular oncology. Cell. 1994;79:193–8.

    Article  Google Scholar 

  5. Donato NJ, Talpaz M. Clinical use of tyrosine kinase inhibitors: therapy for chronic myelogenous leukemia and other cancers. Clin Cancer Res. 2000;6:2965–6.

    Google Scholar 

  6. Roth BL, Sheffler DJ, Kroeze WK. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov. 2004;3:353–9.

    Article  Google Scholar 

  7. Frantz S. Drug discovery: playing dirty. Nature. 2005;437:942–3.

    Article  ADS  Google Scholar 

  8. Keith CT, Borisy AA, Stockwell BR. Multicomponent therapeutics for networked systems. Nat Rev Drug Discov. 2005;4:71–8.

    Article  Google Scholar 

  9. Mencher SK, Wang LG. Promiscuous drugs compared to selective drugs (promiscuity can be a virtue). BMC Clin Pharmacol. 2005;5:3–9.

    Article  Google Scholar 

  10. McGovern SL, Helfand BT, Feng B, Shoichet BK. A specific mechanism of nonspecific inhibition. J Med Chem. 2003;46:4265–72.

    Article  Google Scholar 

  11. Feng BY, Shelat A, Doman TN, et al. High-throughput assays for promiscuous inhibitors. Nat Chem Biol. 2005;1:146–8.

    Article  Google Scholar 

  12. Force T, Krause D, van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer. 2007;7:332–44.

    Article  Google Scholar 

  13. Fernández A, Sanguino A, Peng Z, Ozturk E, Chen J, Crespo A, Wulf S, Shavrin A, Qin C, Ma J, Trent J, Lin Y, Han HD, Mangala LS, Bankson JA, Gelovani J, Samarel A, Bornmann W, Sood AK, Lopez-Berestein G. An anticancer c-kit kinase inhibitor is reengineered to make it more active and less cardiotoxic. J Clin Invest. 2007;117:4044–54.

    Article  Google Scholar 

  14. Demetri GD. Structural reengineering of imatinib to decrease cardiac risk in cancer therapy. J Clin Invest. 2007;117:3650–3.

    Article  Google Scholar 

  15. Crunkhorn S. Anticancer drugs: redesigning kinase inhibitors. Nat Rev Drug Discov. 2008;7:120–1.

    Article  Google Scholar 

  16. Hopkins AL, Mason J, Overington J. Can we rationally design promiscuous drugs? Curr Opin Struct Biol. 2006;16:127–36.

    Article  Google Scholar 

  17. Hampton T. “Promiscuous” anticancer drugs that hit multiple targets may thwart resistance. JAMA. 2004;292:419–22.

    Article  Google Scholar 

  18. Hopkins AL, Ren J, Milton J, et al. Design of non-nucleoside inhibitors of HIV-1 reverse transcriptase with improved drug resistance properties. J Med Chem. 2004;47:5912–22.

    Article  Google Scholar 

  19. Owens J. Screening: dirty drugs’ secrets uncovered. Nat Rev Drug Discov. 2006;5:542.

    Article  Google Scholar 

  20. Fabian MA, Biggs WH, Treiber DK, et al. A small molecule kinase interaction map for clinical kinase inhibitors. Nat Biotechnol. 2005;23:329–36.

    Article  Google Scholar 

  21. Karaman MW, Herrgard S, Treiber DK, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008;26:127–32.

    Article  Google Scholar 

  22. Fedorov O, Marsden B, Pogacic V, et al. A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc Natl Acad Sci U S A. 2007;104:20523–8.

    Article  ADS  Google Scholar 

  23. MacDonald ML, Lamerdin J, Owens S, et al. Identifying off-targets effects and hidden phenotypes of drugs in human cells. Nat Chem Biol. 2006;2:329–37.

    Article  Google Scholar 

  24. Brunton LL, Lazo JS, Parker KL. Goodman & Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill; 2006.

    Google Scholar 

  25. Rishton GM. Failure and success in modern drug discovery: guiding principles in the establishment of high probability of success drug discovery organizations. Med Chem. 2005;1:519–27.

    Article  Google Scholar 

  26. Kerkela R, Grazette L, Yacobi R, et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med. 2006;12:908–16.

    Article  Google Scholar 

  27. Fedorov O, Sundstrom M, Marsden B, Knapp S. Insights for the development of specific kinase inhibitors by targeted structural genomics. Drug Discov Today. 2007;12:365–72.

    Article  Google Scholar 

  28. Bogoyevitch MA, Fairlie DP. A new paradigm for protein kinase inhibition: blocking phosphorylation without directly targeting ATP binding. Drug Discov Today. 2007;12:622–33.

    Article  Google Scholar 

  29. Crespo A, Fernández A. Kinase packing defects as drug targets. Drug Discov Today. 2007;12:917–23.

    Article  Google Scholar 

  30. Chen J, Zhang X, Fernández A. Molecular basis for specificity in the druggable kinome: sequence-based analysis. Bioinformatics. 2007;23:563–72.

    Article  Google Scholar 

  31. Griffin JD. Interaction maps for kinase inhibitors. Nat Biotechnol. 2005;23:308–9.

    Article  Google Scholar 

  32. Liu Y, Gray NS. Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol. 2006;2:358–64.

    Article  Google Scholar 

  33. Noble ME, Endicott JA, Johnson LN. Protein kinase inhibitors: insights into drug design from structure. Science. 2004;303:1800–5.

    Article  ADS  Google Scholar 

  34. Torrance CJ, Jackson PE, Montgomery E, et al. Combinatorial chemoprevention of intestinal neoplasia. Nat Med. 2000;6:1024–8.

    Article  Google Scholar 

  35. Erlichman C, Hidalgo M, Boni JB, et al. Phase I study of EKB-569, an irreversible inhibitor of the epidermal growth factor receptor, in patients with advanced solid tumors. J Clin Oncol. 2006;24:2252–60.

    Article  Google Scholar 

  36. Wissner A, Overbeek E, Reich MF, et al. Synthesis and structure–activity relationships of 6,7-disubstituted 4-Anilinoquinoline-3-carbonitriles. The design of an orally active, irreversible inhibitor of the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) and the human epidermal growth factor receptor-2 (HER-2). J Med Chem. 2003;46:49–63.

    Article  Google Scholar 

  37. Zhang X, Crespo A, Fernández A. Turning promiscuous kinase inhibitors into safer drugs. Trends Biotechnol. 2008;26:295–301.

    Article  Google Scholar 

  38. Fernández A, Maddipati S. The a-priori inference of cross reactivity for drug targeted kinases. J Med Chem. 2006;49:3092–100.

    Article  Google Scholar 

  39. Butcher EC. Systems biology in drug discovery. Nat Biotechnol. 2004;22:1253–9.

    Article  Google Scholar 

  40. Butcher EC. Can cell systems biology rescue drug discovery? Nat Rev Drug Discov. 2005;4:461–7.

    Article  Google Scholar 

  41. Kitano H. A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov. 2007;6:202–9.

    Article  Google Scholar 

  42. Volgestein B, Kinzler KW. Cancer genes and the pathway they control. Nat Med. 2004;10:789–99.

    Article  Google Scholar 

  43. Kitano H. Biological robustness. Nat Rev Genet. 2004;5:826–37.

    Article  Google Scholar 

  44. Carlson JM, Doyle J. Complexity and robustness. Proc Natl Acad Sci U S A. 2002;99:2538–45.

    Article  ADS  Google Scholar 

  45. Hellerstein MK. Exploiting complexity and the robustness of network architecture for drug discovery. J Pharmacol Exp Ther. 2008;325:1–9.

    Article  Google Scholar 

  46. Seidman A. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20:1215–21.

    Article  Google Scholar 

  47. Martel CL. Bevacizumab-related toxicities: association of hypertension and proteinuria. Commun Oncol. 2006;3:90–3.

    Article  Google Scholar 

  48. Motzer RJ, Michaelson MD, Redman BG, et al. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol. 2006;24:16–24.

    Article  Google Scholar 

  49. Joensuu H. Cardiac toxicity of sunitinib. Lancet. 2007;370:1978–80.

    Article  Google Scholar 

  50. Chu TF, Rupnick MA, Kerkela R, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370:2011–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernández, A. (2016). Epistructure-Based Design of Drugs with Controlled Promiscuity. In: Physics at the Biomolecular Interface. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-30852-4_13

Download citation

Publish with us

Policies and ethics