Skip to main content

Epistructural Informatics for the Drug Designer

  • Chapter
  • First Online:
  • 780 Accesses

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

The dehydron-based re-engineering of kinase inhibitor Gleevec to make it a safer drug (Chap. 9) illustrated the power of epistructural physics as enabler of a novel platform for drug design. As shown in this bioinformatics chapter, epistructural analysis provides a universal selectivity filter, applicable to the entire human kinome and its idiosyncratic variations. A kinome-wide bioinformatics analysis reveals that epistructure-based design heralds a new generation of drugs that enable a tighter control of specificity and a personalization of the treatment. The universality of this selectivity filter in the field of therapeutic interference with cell signaling is thus revealed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bain J, McLauchlan H, Eliott M, Cohen P. The specificities of protein kinase inhibitors: an update. Biochem J. 2003;371:199–204.

    Article  Google Scholar 

  2. Druker BJ. Molecularly targeted therapy: have the floodgates opened? Oncologist. 2004;9:357–60.

    Article  Google Scholar 

  3. Hopkins AL, Mason JS, Overington JP. Can we rationally design promiscuous drugs? Curr Opin Struct Biol. 2006;16:127–36.

    Article  Google Scholar 

  4. Huse M, Kuriyan J. The conformational plasticity of protein kinases. Cell. 2002;109:275–82.

    Article  Google Scholar 

  5. Knight ZA, Shokat KM. Features of selective kinase inhibitors. Chem Biol. 2005;12:621–37.

    Article  Google Scholar 

  6. Chothia C. Hydrophobic bonding and accessible surface area in proteins. Nature. 1974;248:338–9.

    Article  ADS  Google Scholar 

  7. Whittle PJ, Blundell TL. Protein structure-based drug design. Annu Rev Biophys Biomol Struct. 1994;23:349–75.

    Article  Google Scholar 

  8. Feng BY, Shelat A, Doman TN, Guy RK, Shoichet BK. High throughput assays for promiscuous inhibitors. Nat Chem Biol. 2005;1:146–8.

    Article  Google Scholar 

  9. Zhang X, Crespo A, Fernández A. Trung promiscuous kinase inhibitors into safer drugs. Trends Biotechnol. 2008;26:295–300.

    Article  Google Scholar 

  10. Chen JP, Zhang X, Fernández A. Molecular basis for specificity in the druggablekinome: sequence-based analysis. Bioinformatics. 2007;23:563–72.

    Article  Google Scholar 

  11. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34.

    Article  ADS  Google Scholar 

  12. Braken C, Iakoucheva LM, Romero PR, Dunker AK. Combining prediction, computation and experiment for the characterization of protein disorder. Curr Opin Struct Biol. 2004;14:570–6.

    Article  Google Scholar 

  13. Fernández A, Berry RS. Molecular dimension explored in evolution to promote proteomic complexity. Proc Natl Acad Sci U S A. 2004;101:13460–5.

    Article  ADS  Google Scholar 

  14. Fabian MA, Biggs WH, Treiber DK, et al. A small molecule kinase interaction map for clinical kinase inhibitors. Nat Biotechnol. 2005;23:329–36.

    Article  Google Scholar 

  15. Karaman MW, Herrgard S, Treiber DK, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008;26:127–32.

    Article  Google Scholar 

  16. Bonneau R, Straus CE, Rohl CA, et al. De novo prediction of three-dimensional structures for major protein families. J Mol Biol. 2002;322:65–78.

    Article  Google Scholar 

  17. Chivian D, Kim DE, Malmstrom L, et al. Prediction of CASP6 structures using automated Robetta protocols. Proteins. 2005;61 Suppl 7:157–66.

    Article  Google Scholar 

  18. Higgins DG, Thompson JD, Gibson TJ. Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 1996;266:383–402.

    Article  Google Scholar 

  19. Fraczkiewicz R, Braun W. Exact and efficient analytical calculation of the accessible surface areas and their gradient for macromolecules. J Comput Chem. 1998;19:319–33.

    Article  Google Scholar 

  20. Ooi T, Oobatake M, Nemethy G, Scheraga HA. Accessible surface area as a measure of the thermodynamic parameters of hydration of peptides. Proc Natl Acad Sci U S A. 1987;84:3086–90.

    Article  ADS  Google Scholar 

  21. Ma B, Elkayam T, Wolfson T, Nussinov R. Protein-protein interactions structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc Natl Acad Sci U S A. 2003;100:5772–7.

    Article  ADS  Google Scholar 

  22. Fernández A, Maddipati S. A priori inference of cross reactivity for drug-targeted kinases. J Med Chem. 2006;49:3092–100.

    Article  Google Scholar 

  23. Fernández A, Sosnick TR, Colubri A. Dynamics of hydrogen bond desolvation in protein folding. J Mol Biol. 2002;321:659–75.

    Article  Google Scholar 

  24. Fernández A. Keeping dry and crossing membranes. Nat Biotechnol. 2004;22:1081–4.

    Article  Google Scholar 

  25. Gazdar A. Personalized medicine and inhibition of EGFR signaling in lung cancer. N Engl J Med. 2009;361:1018–20.

    Article  Google Scholar 

  26. Janne PA, Gray N, Settleman J. Factors underlying sensitivity of cancers to small molecule kinase inhibitors. Nat Rev Drug Discov. 2009;8:709–23.

    Article  Google Scholar 

  27. Fernández A, Sanguino A, Peng Z, Crespo A, Ozturk E, Zhang X, Wang S, Bornmann W, Lopez-Berestein G. Rational drug redesign to overcome drug resistance in cancer therapy: imatinib moving target. Cancer Res. 2007;67:4028–33.

    Article  Google Scholar 

  28. Hubbard SR. Oncogenic mutations in B-Raf: some losses yield gains. Cell. 2004;116:764–6.

    Article  Google Scholar 

  29. Drews J. Drug discovery: a historical perspective. Science. 2000;287:1960–4.

    Article  ADS  Google Scholar 

  30. Bleicher KH, Böhm HJ, Muller K, Alanine AI. Hit and lead generation: beyond high-throughput screening. Nat Rev. 2003;2:369–78.

    Google Scholar 

  31. Liszewski K. Drug discovery: successful lead optimization strategies. Genet Eng Biotech News. 2006;26:14.

    Google Scholar 

  32. Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev. 2004;3:935–49.

    Google Scholar 

  33. Shoichet BB. Virtual screening of chemical libraries. Nature. 2004;432:862–5.

    Article  ADS  Google Scholar 

  34. Oprea TI, Matter H. Integrating virtual screening in lead discovery. Curr Opin Chem Biol. 2004;8:349–58.

    Article  Google Scholar 

  35. Lengauer T, Lemmen C, Rarey M, Zimmermann M. Novel technologies for virtual screening. Drug Discov Today. 2004;9:27–34.

    Article  Google Scholar 

  36. Lyne PD. Structure-based virtual screening: an overview. Drug Discov Today. 2002;7:1047–55.

    Article  Google Scholar 

  37. Kuhn P, Wilson K, Patch MG, Stevens RC. The genesis of high-throughput structure-based drug discovery using protein crystallography. Curr Opin Chem Biol. 2002;6:704–10.

    Article  Google Scholar 

  38. Mizutani MY, Itai A. Efficient method for high-throughput virtual screening based on flexible docking: discovery of novel acetylcholinesterase inhibitors. J Med Chem. 2004;47:4818–28.

    Article  Google Scholar 

  39. Mizutani MY, Takamatsu Y, Ichinose T, Nakamura K, Itai A. Effective handling of induced-fit motion in flexible docking. Proteins Struct Funct Bioinf. 2006;63:878–91.

    Article  Google Scholar 

  40. Vieth M, Higgs RE, Robertson DH, Shapiro M, Gragg EA, Hemmerle H. Kinomics-structural biology and chemogenomics of kinase inhibitors and targets. Biochim Biophys Acta. 2004;1697:243–57.

    Article  Google Scholar 

  41. Rockey WM, Elcock AH. Rapid computational identification of the targets of protein kinase inhibitors. J Med Chem. 2005;48:4138–52.

    Article  Google Scholar 

  42. Crespo A, Fernández A. Kinase packing defects as drug targets. Drug Discov Today. 2007;12:917–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernández, A. (2016). Epistructural Informatics for the Drug Designer. In: Physics at the Biomolecular Interface. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-30852-4_10

Download citation

Publish with us

Policies and ethics