Advertisement

High-Grade Gliomas

  • Jennifer S. ChangEmail author
  • Daphne A. Haas-Kogan
  • Sabine Mueller
Chapter
Part of the Pediatric Oncology book series (PEDIATRICO)

Abstract

This chapter focuses on pediatric high-grade gliomas, with the exception of diffuse intrinsic pontine gliomas, which will be covered in a different chapter of this text. Gliomas arise from glial cells, which support and protect neurons and are most commonly differentiated along the astrocytic or oligodendroglial lineage. The World Health Organization (WHO) classification divides gliomas into low (WHO grade I and II)- and high-grade subgroups (Luis et al. 2007). High-grade pediatric central nervous system (CNS) tumors are comprised primarily of anaplastic astrocytomas (AA, WHO grade III) and glioblastomas (GBM, WHO grade IV), as anaplastic tumors with an oligodendroglial component are very uncommon in children (Hyder et al. 2007). High-grade gliomas can either present as high-grade disease, or they can result from transformation of a low-grade tumor, although the latter is less common in children. In contrast to the adult population, high-grade gliomas in children are relatively infrequent, representing less than 20 % of cases (Pollack 1994; Packer 1999). The etiology for most pediatric CNS tumors is unknown, although some genetic syndromes are associated with an increased risk. Despite advances in treatment for other childhood tumors, patients with high-grade gliomas invariably have a poor outcome, and 5-year survival rates remain less than 20 %.

Keywords

IDH1 Mutation Gross Total Resection Pediatric Brain Tumor Diffuse Intrinsic Pontine Glioma Gliomatosis Cerebri 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Armstrong CL, Gyato K et al (2004) A critical review of the clinical effects of therapeutic irradiation damage to the brain: the roots of controversy. Neuropsychol Rev 14(1):65–86CrossRefPubMedGoogle Scholar
  2. Barani IJ, Cuttino LW et al (2007) Neural stem cell-preserving external-beam radiotherapy of central nervous system malignancies. Int J Radiat Oncol Biol Phys 68(4):978–985CrossRefPubMedGoogle Scholar
  3. Bax DA, Gaspar N et al (2009) EGFRvIII deletion mutations in pediatric high-grade glioma and response to targeted therapy in pediatric glioma cell lines. Clin Cancer Res 15:5753–5761CrossRefPubMedGoogle Scholar
  4. Bax DA, Mackay A et al (2010) A distinct spectrum of copy number aberrations in pediatric high-grade gliomas. Clin Cancer Res 16(13):3368–3377Google Scholar
  5. Benesch M, Wagner S et al (2005) Primary dissemination of high-grade gliomas in children: experiences from four studies of the Pediatric Oncology and Hematology Society of the German Language Group (GPOH). J Neurooncol 72(2):179–183CrossRefPubMedGoogle Scholar
  6. Bredel M, Pollack IF et al (1999) Epidermal growth factor receptor expression and gene amplification in high-grade non-brainstem gliomas of childhood. Clin Cancer Res 5(7):1786–1792PubMedGoogle Scholar
  7. Chapman PB, Hauschild A et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cheng Y, Ng HK, Zhang SF et al (1999) Genetic alterations in pediatric high-grade astrocytomas. Hum Pathol 30:1284–1290CrossRefPubMedGoogle Scholar
  9. Cohen KJ, Pollack IF et al (2011) Temozolomide in the treatment of high-grade gliomas in children: a report from the Children’s Oncology Group. Neuro-Oncology 13:317–323CrossRefPubMedPubMedCentralGoogle Scholar
  10. Donson AM, Addo-Yobo SO, Handler MH, Gore L, Foreman NK (2007) MGMT promoter methylation correlates with survival benefit and sensitivity to temozolomide in pediatric glioblastoma. Pediatr Blood Cancer 48:403–407CrossRefPubMedGoogle Scholar
  11. Duffner PK (2007) Diagnosis of brain tumors in children. Expert Rev Neurother 7(7):875–885CrossRefPubMedGoogle Scholar
  12. Duffner PK, Krischer JP et al (1996) Treatment of infants with malignant gliomas: the Pediatric Oncology Group experience. J Neuro-Oncol 28(2–3):245–256Google Scholar
  13. Estlin EJ, Lashford L et al (1998) Phase I study of temozolomide in paediatric patients with advanced cancer. United Kingdom Children’s Cancer Study Group. Br J Cancer 78(5):652–661CrossRefPubMedPubMedCentralGoogle Scholar
  14. Faury D, Nantel A et al (2007) Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. J Clin Oncol 25(10):1196–1208CrossRefPubMedGoogle Scholar
  15. Finlay JL, Boyett JM et al (1995) Randomized phase III trial in childhood high-grade astrocytoma comparing vincristine, lomustine, and prednisone with the eight-drugs-in-1-day regimen. Childrens Cancer Group. J Clin Oncol 13(1):112–123PubMedGoogle Scholar
  16. Flaherty KT, Infante JR et al (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367:1694–1703CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fulton DS, Urtasun RC et al (1992) Increasing radiation dose intensity using hyperfractionation in patients with malignant glioma. Final report of a prospective phase I–II dose response study. J Neurooncol 14(1):63–72CrossRefPubMedGoogle Scholar
  18. Ganigi PM, Santosh V, Anandh B, Chandramouli BA, Sastry Kolluri VR (2005) Expression of p53, EGFR, pRb and bcl-2 proteins in pediatric glioblastoma multiforme: a study of 54 patients. Pediatr Neurosurg 41:292–299CrossRefPubMedGoogle Scholar
  19. Geyer JR, Finlay JL et al (1995) Survival of infants with malignant astrocytomas. A report from the Childrens Cancer Group. Cancer 75(4):1045–1050CrossRefPubMedGoogle Scholar
  20. Grovas AC, Boyett JM et al (1999) Regimen-related toxicity of myeloablative chemotherapy with BCNU, thiotepa, and etoposide followed by autologous stem cell rescue for children with newly diagnosed glioblastoma multiforme: report from the Children’s Cancer Group. Med Pediatr Oncol 33(2):83–87CrossRefPubMedGoogle Scholar
  21. Gutierrez AN, Westerly DC et al (2007) Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study. Int J Radiat Oncol Biol Phys 69(2):589–597CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hamilton SR, Liu B et al (1995) The molecular basis of Turcot’s syndrome. N Engl J Med 332(13):839–847CrossRefPubMedGoogle Scholar
  23. Harrow S, Papanastassiou et al (2004) HSV1716 injection into the brain adjacent to tumour following surgical resection of high-grade glioma: safety data and long-term survival. Gene Ther 11:1648–1658CrossRefPubMedGoogle Scholar
  24. Hegde MR, Chong B et al (2005) A homozygous mutation in MSH6 causes Turcot syndrome. Clin Cancer Res 11(13):4689–4693CrossRefPubMedGoogle Scholar
  25. Heideman RL, Kuttesch J Jr et al (1997) Supratentorial malignant gliomas in childhood: a single institution perspective. Cancer 80(3):497–504CrossRefPubMedGoogle Scholar
  26. Hyder DJ, Sung L et al (2007) Anaplastic mixed gliomas and anaplastic oligodendroglioma in children: results from the CCG 945 experience. J Neuro-Oncol 83:1–8CrossRefGoogle Scholar
  27. Lashford LS, Thiesse P et al (2002) Temozolomide in malignant gliomas of childhood: a United Kingdom Children’s Cancer Study Group and French Society for Pediatric Oncology Intergroup Study. J Clin Oncol 20(24):4684–4691CrossRefPubMedGoogle Scholar
  28. Li FP, Fraumeni JF Jr et al (1988) A cancer family syndrome in twenty-four kindreds. Cancer Res 48(18):5358–5362PubMedGoogle Scholar
  29. Liang M-L, Ma J et al (2008) Tyrosine kinase expression in pediatric high grade astrocytoma. J Neuro-Oncol 87:247–253CrossRefGoogle Scholar
  30. Luis DN, Ohgaki H et al (2007) The WHO classification of tumors of the nervous system. Acta Neuropathol 114(2):97–109CrossRefGoogle Scholar
  31. Marachelian A, Butturini A et al (2008) Myeloablative chemotherapy with autologous hematopoietic progenitor cell rescue for childhood central nervous system tumors. Bone Marrow Transplant 41(2):167–172CrossRefPubMedGoogle Scholar
  32. Massimino M, Gandola L et al (2005) Sequential chemotherapy, high-dose thiotepa, circulating progenitor cell rescue, and radiotherapy for childhood high-grade glioma. Neuro-Oncology 7(1):41–48CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mehta V, Chapman A et al (2002) Latency between symptom onset and diagnosis of pediatric brain tumors: an Eastern Canadian geographic study. Neurosurgery 51(2):365–372; discussion 372–373PubMedGoogle Scholar
  34. Merchant TE, Hua CH et al (2008) Proton versus photon radiotherapy for common pediatric brain tumors: comparison of models of dose characteristics and their relationship to cognitive function. Pediatr Blood Cancer 51(1):110–117CrossRefPubMedGoogle Scholar
  35. Mueller S, Phillips J et al (2012) PTEN promoter methylation and activation of the PI3K/Akt/mTOR pathway in pediatric gliomas and influence on clinical outcome. Neuro-Oncology 14(9):1146–1152CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nakamura M, Shimada K et al (2007) Molecular pathogenesis of pediatric astrocytic tumors. Neuro-Oncology 9(2):113–123CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nicholson HS, Kretschmar CS et al (2007) Phase 2 study of temozolomide in children and adolescents with recurrent central nervous system tumors: a report from the Children’s Oncology Group. Cancer 110(7):1542–1550CrossRefPubMedGoogle Scholar
  38. Nicoliades TP, Li H et al (2011) Targeted therapy for BRAF V600E malignant astrocytoma. Clin Cancer Res 21(6):7595–7604CrossRefGoogle Scholar
  39. Packer RJ (1999) Primary central nervous system tumors in children. Curr Treat Options Neurol 1(5):395–408CrossRefPubMedGoogle Scholar
  40. Packer RJ, Boyett JM et al (1993) Hyperfractionated radiation therapy (72 Gy) for children with brain stem gliomas. A Childrens Cancer Group phase I/II trial. Cancer 72(4):1414–1421CrossRefPubMedGoogle Scholar
  41. Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12:265–277CrossRefPubMedPubMedCentralGoogle Scholar
  42. Paugh BS, Qu C et al (2010) Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol 28(18):3061–3068CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pettorini BL, Park YS et al (2008) Radiation-induced brain tumours after central nervous system irradiation in child-hood: a review. Childs Nerv Syst 24(7):793–805CrossRefPubMedGoogle Scholar
  44. Pollack IF (1994) Brain tumors in children. N Engl J Med 331(22):1500–1507CrossRefPubMedGoogle Scholar
  45. Pollack IF, Finkelstein SD et al (2001) Age and TP53 mutation frequency in childhood malignant gliomas: results in a multiinstitutional cohort. Cancer Res 61(20):7404–7407PubMedGoogle Scholar
  46. Pollack IF, Finkelstein SD et al (2002a) Expression of p53 and prognosis in children with malignant gliomas. N Engl J Med 346(6):420–427CrossRefPubMedGoogle Scholar
  47. Pollack IF, Hamilton RL et al (2002b) Impact of proliferation index on outcome in childhood malignant gliomas: results in a multi-institutional cohort. Neurosurgery 50(6):1238–1244; discussion 1244–1245PubMedGoogle Scholar
  48. Pollack IF, Hamilton RL et al (2006a) Rarity of PTEN deletions and EGFR amplification in malignant gliomas of childhood: results from the Children’s Cancer Group 945 cohort. J Neurosurg 105(5 Suppl):418–424PubMedGoogle Scholar
  49. Pollack IF, Hamilton RL et al (2006b) O6-methylguanine-DNA methyltransferase expression strongly correlates with outcome in childhood malignant gliomas: results from the CCG-945 cohort. J Clin Oncol 24(21):3431–3437CrossRefPubMedGoogle Scholar
  50. Pollack IF, Hamilton RL et al (2010) Akt activation is a common event in pediatric malignant gliomas and a potential adverse prognostic marker: a report from the Children’s Oncology Group. J Neuro-Oncol 99:155–163CrossRefGoogle Scholar
  51. Pollack IF, Hamilton RL et al (2011) IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children’s Oncology Group. Childs Nerv Syst 27(1):87–94CrossRefPubMedGoogle Scholar
  52. Pollack IF, Jakacki RI et al (2014) Antigen-specific immune responses and clinical outcome after vaccination with glioma-associated antigen peptides and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in children with newly diagnosed malignant brainstem and nonbrainstem gliomas. J Clin Oncol 32(19):2050–2058CrossRefPubMedPubMedCentralGoogle Scholar
  53. Raffel C, Frederick L, O’Fallon JR et al (1999) Analysis of oncogene and tumor suppressor gene alterations in pediatric malignant astrocytomas reveals reduced survival for patients with PTEN mutations. Clin Cancer Res 5:4085–4090PubMedGoogle Scholar
  54. Robinson GW, Orr BA, Gajjar A (2014) Complete clinical regression of a BRAF B600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy. BMC Cancer 14:258CrossRefPubMedPubMedCentralGoogle Scholar
  55. Schiffman JD, Hodgson JG et al (2010) Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. Cancer Res 70:512–519CrossRefPubMedPubMedCentralGoogle Scholar
  56. Schwartzentruber J, Korshunov A et al (2012) Driver mutations in histone H3.3 and chromatin remodeling genes in paediatric glioblastoma. Nature 482(7384):226–231CrossRefPubMedGoogle Scholar
  57. Setty P, Hammes J et al (2010) A pyrosequencing-based assay for the rapid detection of IDH1 mutations in clinical samples. J Mol Diagn 12(6):750–756CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sposto R, Ertel IJ et al (1989) The effectiveness of chemotherapy for treatment of high grade astrocytoma in children: results of a randomized trial. A report from the Children’s Cancer Study Group. J Neurooncol 7(2):165–177CrossRefPubMedGoogle Scholar
  59. Stupp R, Dietrich PY et al (2002) Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol 20(5):1375–1382CrossRefPubMedGoogle Scholar
  60. Stupp R, Mason WP et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):997–1003CrossRefPubMedGoogle Scholar
  61. Sturm D, Witt H et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437CrossRefPubMedGoogle Scholar
  62. Sure U, Ruedi D, Tachibana O et al (1997) Determination of p53 mutations, EGFR overexpression, and loss of p16 expression in pediatric glioblastomas. J Neuropathol Exp Neurol 56:782–789CrossRefPubMedGoogle Scholar
  63. Tamber MS, Rutka JT (2003) Pediatric supratentorial high grade gliomas. Neurosurg Focus 14(2):e1CrossRefPubMedGoogle Scholar
  64. Thorarinsdottir HK, Santi M et al (2008) Protein expression of platelet-derived growth factor receptor correlates with malignant histology and PTEN with survival in childhood gliomas. Clin Cancer Res 14(11):3386–3394Google Scholar
  65. Turcot J, Despres JP et al (1959) Malignant tumors of the central nervous system associated with familial polyposis of the colon: report of two cases. Dis Colon Rectum 2:465–468CrossRefPubMedGoogle Scholar
  66. Varley JM, McGown G et al (1997) Germ-line mutations of TP53 in Li-Fraumeni families: an extended study of 39 families. Cancer Res 57(15):3245–3252PubMedGoogle Scholar
  67. Warren KE, Gururangan S et al (2011) A phase II study of O6-benzylguanine and temozolomide in pediatric patients with recurrent or progressive high-grade gliomas and brainstem gliomas: a Pediatric Brain Tumor Consortium study. J Neuro-Oncol 106(3):643–649CrossRefGoogle Scholar
  68. Wisoff JH, Boyett JM et al (1998) Current neurosurgical management and the impact of the extent of resection in the treatment of malignant gliomas of childhood: a report of the Children’s Cancer Group trial no. CCG-945. J Neurosurg 89(1):52–59CrossRefPubMedGoogle Scholar
  69. Wolff JE, Gnekow AK et al (2002) Preradiation chemotherapy for pediatric patients with high-grade glioma. Cancer 94(1):264–271CrossRefPubMedGoogle Scholar
  70. Wolff JE, Driever PH et al (2010) Intensive chemotherapy improves survival in pediatric high-grade glioma after gross total resection: results of the. HIT-GBM-C Protoc 116(3):705–712Google Scholar
  71. Wu G, Broniscer A et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44(3):251–253CrossRefPubMedPubMedCentralGoogle Scholar
  72. Yang T, Temkin N et al (2013) Gross total resection correlates with long-term survival in pediatric patients with glioblastoma. World Neurosurg 79(3–4):537–544CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Jennifer S. Chang
    • 1
    Email author
  • Daphne A. Haas-Kogan
    • 2
  • Sabine Mueller
    • 3
  1. 1.Department of Radiation OncologyUniversity of California San Francisco & UCSF Benioff Children’s HospitalSan FranciscoUSA
  2. 2.Department of Radiation OncologyBrigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston Children’s HospitalBostonUSA
  3. 3.Departments of Neurology, Neurosurgery and PediatricsUniversity of California San Francisco & UCSF Benioff Children’s HospitalSan FranciscoUSA

Personalised recommendations