Skip to main content

Passive Control of Singularities by Topological Optimization: The Second-Order Mixed Shape Derivatives of Energy Functionals for Variational Inequalities

  • Chapter
  • First Online:

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 109))

Abstract

A class of nonsmooth shape optimization problems for variational inequalities is considered. The variational inequalities model elliptic boundary value problems with the Signorini type unilateral boundary conditions. The shape functionals are given by the first order shape derivatives of the elastic energy. In such a way the singularities of weak solutions to elliptic boundary value problems can be characterized. An example in solid mechanics is given by the Griffith’s functional, which is defined in plane elasticity to measure SIF, the so-called stress intensity factor, at the crack tips. Thus, topological optimization can be used for passive control of singularities of weak solutions to variational inequalities. The Hadamard directional differentiability of metric the projection onto the positive cone in fractional Sobolev spaces is employed to the topological sensitivity analysis of weak solutions of nonlinear elliptic boundary value problems. The first order shape derivatives of energy functionals in the direction of specific velocity fields depend on the solutions to variational inequalities in a subdomain. A domain decomposition technique is used in order to separate the unilateral boundary conditions and the energy asymptotic analysis. The topological derivatives of nonsmooth integral shape functionals for variational inequalities are derived. Singular geometrical domain perturbations in an elastic body \(\Omega\) are approximated by regular perturbations of bilinear forms in variational inequality, without any loss of precision for the purposes of the second-order shape-topological sensitivity analysis. The second-order shape-topological directional derivatives are obtained for the Laplacian and for linear elasticity in two and three spatial dimensions. In the proposed method of sensitivity analysis, the singular geometrical perturbations \(\epsilon \rightarrow \omega _{\epsilon }\subset \Omega\) centred at \(\hat{x} \in \Omega\) are replaced by regular perturbations of bilinear forms supported on the manifold \(\Gamma _{R} =\{ \vert x -\hat{ x}\vert = R\}\) in an elastic body, with R > ε > 0. The obtained expressions for topological derivatives are easy to compute and therefore useful in numerical methods of topological optimization for contact problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adams, D., Helberg, L.: Function Spaces and Potential Theory. Springer, Berlin (1996)

    Book  Google Scholar 

  2. Ancona, A.: Sur les espaces de Dirichlet: principes, fonction de Green. J. Math. Pures Appl. 54, 75–124 (1975)

    MathSciNet  MATH  Google Scholar 

  3. Argatov, I.I., Sokolovski, Y.: Asymptotics of the energy functional in the Signorini problem under small singular perturbation of the domain. (Russian. Russian summary) Zh. Vychisl. Mat. Mat. Fiz. 43(5), 744–758 (2003); translation in Comput. Math. Math. Phys. 43(5), 710–724 (2003)

    Google Scholar 

  4. Beurling, A., Deny, J.: Dirichlet spaces. Proc. Natl. Acad. Sci. U.S.A. 45, 208–215 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  5. Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries. SIAM, Philadelphia, PA (2001)

    MATH  Google Scholar 

  6. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence, RI (2010)

    Google Scholar 

  7. Frémiot, G., Horn, W., Laurain, A., Rao, M., Sokołowski, J.: On the analysis of boundary value problems in nonsmooth domains. Diss. Math. 462, 149 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Garreau, S., Guillaume, P., Masmoudi, M.: The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39, 1756–1778 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gross, W.A.: The second fundamental problem of elasticity applied to a plane circular ring. Z. Angew. Math. Phys. 8, 71–73 (1957)

    Article  MathSciNet  Google Scholar 

  10. Hanouzet, B., Joly, J.-L.: Méthodes d’ordre dans l’interprétation de certaines inéquations variationnelles et applications. J. Funct. Anal. 34, 217–249 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haraux, A.: How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Jpn. 29, 615–631 (1977)

    MathSciNet  MATH  Google Scholar 

  12. Kachanov, M., Shafiro, B., Tsukrov, I.: Handbook of Elasticity Solutions. Kluwer Academic Publishers, Dordrecht (2003)

    Book  Google Scholar 

  13. Khludnev, A.M., Sokołowski, J.: Griffith’s formula and Rice-Cherepanov’s integral for elliptic equations with unilateral conditions in nonsmooth domains. In: Optimal Control of Partial Differential Equations (Chemnitz, 1998). International Series of Numerical Mathematics, vol. 133, pp. 211–219. Birkhäuser, Basel (1999)

    Google Scholar 

  14. Khludnev, A.M., Sokołowski, J.: The Griffith’s formula and the Rice-Cherepanov integral for crack problems with unilateral conditions in nonsmooth domains. Eur. J. Appl. Math. 10, 379–394 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khludnev, A.M., Sokołowski, J.: Griffith’s formulae for elasticity systems with unilateral conditions in domains with cracks. Eur. J. Mech. A. Solids 19, 105–119 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lewinski, T., Sokołowski, J.: Energy change due to the appearance of cavities in elastic solids. Int. J. Solids Struct. 40, 1765–1803 (2003)

    Article  MATH  Google Scholar 

  17. Lurie, A.I.: Theory of Elasticity. Springer, Berlin/Heidelberg (2005)

    Book  Google Scholar 

  18. Mignot, F.: Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22, 130–185 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Muskhelishvili, N.I.: Some Basic Problems on the Mathematical Theory of Elasticity. Noordhoff, Groningen (1952)

    Google Scholar 

  20. Nazarov, S.A., Sokołowski, J.: Asymptotic analysis of shape functionals. J. Math. Pures Appl. 82(2), 125–196 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nazarov, S.A., Sokołowski, J.: Self-adjoint extensions for the Neumann Laplacian and applications. Acta Math. Sin. (Engl. Ser.) 22(3), 879–906 (2006)

    Google Scholar 

  22. Novotny, A.A., Sokołowski, J.: Topological Derivative in Shape Optimization. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  23. Novotny, A.A., Feijóo, R.A., Padra, C., Taroco, E.A.: Topological sensitivity analysis. Comput. Methods Appl. Mech. Eng. 192, 803–829 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Plotnikov, P., Sokołowski, J.: Compressible Navier-Stokes Equations: Theory and Shape Optimization. Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series), vol. 73. Birkhäuser/Springer Basel AG, Basel (2012)

    Google Scholar 

  25. Sokołowski, J., Żochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim. 37(4), 1251–1272 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sokołowski, J., Żochowski, A.: Optimality conditions for similtaneous topology and shape optimization. SIAM J. Control Optim. 42(4), 1198–1221 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sokołowski, J., Żochowski, A.: Modelling of topological derivatives for contact problems. Numer. Math. 102(1), 145–179 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sokołowski, J., Żochowski, A.: Topological derivatives for optimization of plane elasticity contact problems. Eng. Anal. Bound. Elem. 32(11), 900–908 (2008)

    Article  MATH  Google Scholar 

  29. Sokołowski, J., Zolésio, J.-P.: Introduction to Shape Optimization, Shape Sensitivity Analysis. Springer Series in Computational Mathematics, vol. 16. Springer, Berlin (1992)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the DFG EC315 “Engineering of Advanced Materials” and by the ANR-12-BS0-0007 Optiform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Sokołowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leugering, G., Sokołowski, J., Żochowski, A. (2016). Passive Control of Singularities by Topological Optimization: The Second-Order Mixed Shape Derivatives of Energy Functionals for Variational Inequalities. In: Hiriart-Urruty, JB., Korytowski, A., Maurer, H., Szymkat, M. (eds) Advances in Mathematical Modeling, Optimization and Optimal Control. Springer Optimization and Its Applications, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-319-30785-5_4

Download citation

Publish with us

Policies and ethics