Skip to main content

Examining Scaling Laws: Bivariate Descriptions of Urban Layouts

  • Chapter
  • First Online:
The Geometry of Urban Layouts
  • 860 Accesses

Abstract

Using bivariate regression models, this chapter presents studies on scaling laws—rank-size distributions and allometric relations—in the geometric measures of urban layout maps. Before presenting these studies, I define the statistical methods used, introduce the concept of scaling and its mathematical expressions, and discuss previous studies on scaling in biology and cities to provide context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thompson DW (1942) On growth and form. Cambridge University Press, Cambridge

    Google Scholar 

  2. Olson EC, Miller RL (1951) Relative growth in paleontological studies. J Paleontol 25(2):212–223

    Google Scholar 

  3. Gould SJ (1966) Allometry and size in ontogeny and phylogeny. Biol Rev 41(4):587–640

    Article  Google Scholar 

  4. Benguigui L, Blumenfeld-Lieberthal E (2006) From lognormal distribution to power law: a new classification of the size distributions. Int J Mod Phys C 17(10):1429–1436

    Article  Google Scholar 

  5. Naroll RS, Von Bertalanffy L (1956) The principle of allometry in biology and the social sciences. In: General systems yearbook, vol 1, pt 2. Society for the Advancement of General Systems Theory, Ann Arbor, MI, pp 76–89

    Google Scholar 

  6. Packard GC (2009) On the use of logarithmic transformations in allometric analyses. J Theor Biol 257(3):515–518

    Article  Google Scholar 

  7. Packard GC (2012) Is non‐loglinear allometry a statistical artifact? Biol J Linn Soc 107(4):764–773

    Article  Google Scholar 

  8. Packard GC, Birchard GF, Boardman TJ (2011) Fitting statistical models in bivariate allometry. Biol Rev 86(3):549–563

    Article  Google Scholar 

  9. Packard GC, Boardman TJ (2008) Model selection and logarithmic transformation in allometric analysis. Physiol Biochem Zool 81(4):496–507

    Article  Google Scholar 

  10. Count EW (1947) Brain and body weight in man: their antecedents in growth and evolution: a study in dynamic somatometry. Ann N Y Acad Sci 46(10):993–1122

    Article  Google Scholar 

  11. Needham A (1950) The form-transformation of the abdomen of the female pea-crab, Pinnotheres pisum Leach. Proc R Soc Lond B Biol Sci 137(886):115–136

    Article  Google Scholar 

  12. Finney D (1989) Was this in your statistics textbook? VI. Regression and covariance. Exp Agric 25(3):291–311

    Google Scholar 

  13. Sholl DA (1950) A discussion on the measurement of growth and form; the theory of differential growth analysis. Proc R Soc Lond B 137(889):470

    Article  Google Scholar 

  14. Misra R, Reeve E (1964) Genetic variation of relative growth rates in Notonecta undulata: I. The relation of femur length to body length. Genet Res 5(3):384–396

    Article  Google Scholar 

  15. Cock A (1963) Genetical studies on growth and form in the fowl: 1. Phenotypic variation in the relative growth pattern of shank length and body-weight. Genet Res 4(2):167–192

    Article  Google Scholar 

  16. White JF, Gould SJ (1965) Interpretation of the coefficient in the allometric equation. Am Nat 99:5–18

    Article  Google Scholar 

  17. West GB, Brown JH (2004) Life’s universal scaling laws. Phys Today 57(9):36–42

    Article  Google Scholar 

  18. West GB, Woodruff WH, Brown JH (2002) Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc Natl Acad Sci 99(suppl 1):2473–2478

    Article  Google Scholar 

  19. Huxley JS (1932) Problems of relative growth. Dial Press, New York

    Google Scholar 

  20. Savage VM et al (2004) The predominance of quarter‐power scaling in biology. Funct Ecol 18(2):257–282

    Article  Google Scholar 

  21. Von Bertalanffy L (1951) General system theory: a new approach to unity of science: 1. Problems of general system theory. Hum Biol 23(4):302–312

    Google Scholar 

  22. Hersh AH (1941) Allometric growth: the ontogenetic and phylogenetic significance of differential rates of growth. In: 3rd symposium on growth, vol 5, pp 113–141

    Google Scholar 

  23. Von Bertalanffy L, Pirozynski W (1952) Ontogenetic and evolutionary allometry. Evolution 6(4):387–392

    Article  Google Scholar 

  24. Ryder JA (1893) The correlations of the volumes and surfaces of organisms. University of Pennsylvania Press, Philadelphia

    Google Scholar 

  25. Jacobs J (1961) The death and life of great American cities. Vintage Books/Random House, New York

    Google Scholar 

  26. Alexander C (1965) A city is not a tree. Archit Forum 122(1):58–62

    Google Scholar 

  27. Mora C et al (2011) How many species are there on Earth and in the ocean? PLoS Biol 9(8):e1001127

    Article  Google Scholar 

  28. Pareto V (1897) The new theories of economics. J Polit Econ 5(4):485–502

    Article  Google Scholar 

  29. Zipf GK (1949) Human behavior and the principle of least effort. Addison-Wesley, Oxford

    Google Scholar 

  30. Vining R (1955) A description of certain spatial aspects of an economic system. Econ Dev Cult Chang 3:147–195

    Article  Google Scholar 

  31. Naroll R (1956) A preliminary index of social development. Am Anthropol 58(4):687–715

    Article  Google Scholar 

  32. Berry BJ (1964) Cities as systems within systems of cities. Pap Reg Sci 13(1):147–163

    Article  Google Scholar 

  33. Gabaix X, Ioannides YM (2004) The evolution of city size distributions. In: Henderson VV, THisse JF (eds) Handbook of regional and urban economics. Elsevier, Oxford, pp 2341–2378

    Google Scholar 

  34. Batty M et al (2008) Scaling and allometry in the building geometries of Greater London. Eur Phys J B Conden Matter Complex Syst 63(3):303–314

    Article  Google Scholar 

  35. Bon R (1972) An introduction to morphornetric analysis of spatial phenomena on micro-environmental scale. Thesis, Harvard University, Department of City and Regional Planning, Laboratory for Computer Graphics and Spatial Analysis

    Google Scholar 

  36. Bon R (1973) Allometry in the topologic structure of architectural spatial systems. Ekistics 36(215):270–276

    Google Scholar 

  37. Steadman P (2006) Allometry and built form: revisiting Ranko Bon’s work with the Harvard Philomorphs. Construct Manage Econ 24(7):755–765

    Article  Google Scholar 

  38. Steadman P, Evans S, Batty M (2009) Wall area, volume and plan depth in the building stock. Build Res Inf 37(5–6):455–467

    Article  Google Scholar 

  39. Kerscher M, Szapudi I, Szalay AS (2000) A comparison of estimators for the two-point correlation function. Astrophys J Lett 535(1):L13–L16

    Article  Google Scholar 

  40. Cowan P (1971) The growth of systems. Archit Des 1971(February):106–108

    Google Scholar 

  41. Bon R (1972) Allometry in micro-environmental morphology. Harvard papers in theoretical geography. Harvard University, Department of City and Regional Planning, Laboratory for Computer Graphics and Spatial Analysis, Cambridge, MA

    Google Scholar 

  42. Masucci AP, Stanilov K, Batty M (2013) Limited urban growth: London’s street network dynamics since the 18th century. PLoS One 8(8):e69469

    Article  Google Scholar 

  43. Isalgue A, Coch H, Serra R (2007) Scaling laws and the modern city. Phys A Stat Mech Appl 382(2):643–649

    Article  Google Scholar 

  44. West GB, Brown JH, Enquist BJ (1999) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284(5420):1677–1679

    Article  Google Scholar 

  45. Bettencourt LM et al (2007) Growth, innovation, scaling, and the pace of life in cities. Proc Natl Acad Sci 104(17):7301–7306

    Article  Google Scholar 

  46. Cardillo A et al (2006) Structural properties of planar graphs of urban street patterns. Phys Rev E 73(6):066107

    Article  Google Scholar 

  47. Hillier B et al (2007) Metric and topo-geometric properties of urban street networks. In: Kubat AS et al (eds) 6th international space syntax symposium. ITU Faculty of Architecture, Istanbul

    Google Scholar 

  48. Hillier B et al (2010) Metric and topo-geometric properties of urban street networks: some convergences, divergences and new results. J Space Syntax 1(2):258–279

    Google Scholar 

  49. Batty M, Longley PA (1994) Fractal cities: a geometry of form and function. Academic, London

    Google Scholar 

  50. Waddington C (1950) The biological foundations of measurements of growth and form. Proc R Soc Lond B Biol Sci 137(889):509–515

    Article  Google Scholar 

  51. Bookstein FL (1977) The study of shape transformation after D’Arcy Thompson. Math Biosci 34(3):177–219

    Article  Google Scholar 

  52. Steadman P (1983) Architectural morphology: an introduction to the geometry of building plans. Pion, London

    Google Scholar 

  53. Stiny G (2008) Shape: talking about seeing and doing. MIT Press, Cambridge, MA

    Google Scholar 

  54. Paio A, Turkienicz B (2009) An urban grammar for Portuguese colonial new towns in the 18th century. In: Proceedings of the SIGraDi [Iberoamerican Society of Digital Graphics], SIGraDi, São Paulo

    Google Scholar 

  55. Beirao J (2011) Generative tools for flexible urban design. Atlantis 22(2):39–41

    Google Scholar 

  56. Halatsch J, Kunze A, Schmitt G (2008) Using shape grammars for master planning. In: Gero JS, Goel AK (eds) Design computing and cognition ’08. Springer, New York, pp 655–673

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rashid, M. (2017). Examining Scaling Laws: Bivariate Descriptions of Urban Layouts. In: The Geometry of Urban Layouts. Springer, Cham. https://doi.org/10.1007/978-3-319-30750-3_6

Download citation

Publish with us

Policies and ethics