Skip to main content

Topological Spaces

  • Chapter
  • First Online:
Book cover Real Analysis
  • 5124 Accesses

Abstract

In this chapter, we generalize the notion of closeness given by a metric or norm. Recall that if we start with a metric space (X, d), then open balls play a central role in obtaining results. An open ball with center x and radius r > 0 is denoted by B(x, r); it is the set {y ∈ X: d(x, y) < r}. In \(\mathbb{R}\), \(B(x,r) = (x - r,x + r)\). A set O is called open in a metric space if for each x ∈ O there is an r > 0 such that the open ball B(x, r) is contained in O. If z ∈ B(x, r), then there is an open ball \(B(z,\delta ) \subseteq B(x,r)\). Just let \(\delta = r - d(x,z)\). This property makes an open ball such as B(x, r) an open set. A subset of a metric space is again a metric space when the metric is restricted to pairs of points in the subset. In a space X with a norm, such as a Hilbert space, the corresponding metric is given by \(d(x,y) = \left \Vert x - y\right \Vert\). Note that for any z ∈ X, \(B(0,r) + z = B(z,r)\). Also, for any z ∈ X, \(\left \Vert z\right \Vert =\Vert z - 0\Vert = d(z,0)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albeverio, S., Fenstad, J.E., Høegh–Krohn, R., Lindstrøm, T.: Nonstandard Methods in Stochastic Analysis and Mathematical Physics. Academic, Orlando (1986)

    Google Scholar 

  2. Aldaz, J.M.: A general covering lemma for the real line. Real Anal. Exch. 17, 394–398 (1991/92)

    Google Scholar 

  3. Anderson, R.M.: A nonstandard representation of Brownian motion and Itô integration. Isr. J. Math. 25, 15–46 (1976)

    Article  MATH  Google Scholar 

  4. Anderson, R.M., Rashid, S.: A nonstandard characterization of weak convergence. Proc. Am. Math. Soc. 69, 327–332 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arkeryd, L.: Loeb solutions of the Boltzmann equation. Arch. Ration. Mech. Anal. 86, 85–97 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bateman, P.T., Erdős, P.: Geometrical extrema suggested by a lemma of Besicovitch. Am. Math. Mon. 58(5), 306–314 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bergelson, V., Tao, T.: Multiple recurrence in quasirandom groups. Geom. Funct. Anal. 24, 1–48 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Besicovitch, A.S.: A general form of the covering principle and relative differentiation of additive functions (I), (II). Proc. Camb. Philos. Soc. 41, 103–110 (1945); 42, 1–10 (1946)

    Google Scholar 

  9. Bliedtner, J., Loeb, P.A.: A reduction technique for limit theorems in analysis and probability theory. Ark. Mat. 30, 25–43 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bliedtner, J., Loeb, P.A.: The optimal differentiation basis and liftings of L . Trans. Am. Math. Soc. 352, 4693–4710 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bliedner, J., Loeb, P.A.: A local maximal function simplifying measure differentiation. MAA Mon. 114, 532–536 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Constantinescu, C., Cornea, A.: Ideale Ränder Riemannscher Flächen. Springer, Heidelberg (1963)

    Book  MATH  Google Scholar 

  13. Cutland, N.J., Ng, S.-A.: The wiener sphere and wiener measure. Ann. Probab. 21(1), 1–13 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dacunha-Castelle, D., Krivine, J.L.: Application des ultraproducts a l’etude des espaces et des algebres de Banach. Stud. Math. 41, 315–334 (1995)

    MathSciNet  MATH  Google Scholar 

  15. Davis, M.: Applied Nonstandard Analysis. Wiley, New York (1977)

    MATH  Google Scholar 

  16. Doob, J.L.: Stochastic processes depending on a continuous parameter. Trans. Am. Math. Soc. 42, 107–140 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dunford, N., Schwartz, J.: Linear Operators Part I. Interscience, New York (1958)

    MATH  Google Scholar 

  18. Egoroff, D.: Sur les suites des fonctions mesurables. C. R. Hebd. Séances Acad. Sci. 152, 244–246 (1911)

    MATH  Google Scholar 

  19. Füredi, Z., Loeb, P.A.: On the best constant for the Besicovitch covering theorem. Proc. Am. Math. Soc. 121(4), 1063–1073 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Henson, C.W., Moore, L.C.: Nonstandard analysis and the theory of Banach spaces. In: Hurd, A.E. (ed.) Nonstandard Analysis - Recent Developments, pp. 27–112. Springer, Berlin (1983)

    Chapter  Google Scholar 

  21. Insall, M., Loeb, P.A., Marciniak, M.: End compactifications and general compactifications. J. Log. Anal. 6(7), 1–16 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Keisler, H.J.: Elementary Calculus, An Infinitesimal Approach, 1st edn. Prindle, Weber & Smith, Boston (1976); 2nd edn. Prindle, Weber & Smith, Boston (1986)

    Google Scholar 

  23. Keisler, H.J.: An infinitesimal approach to stochastic analysis. Mem. Am. Math. Soc. 48(297) (1984)

    Google Scholar 

  24. Kelley, J.L.: The Tychonoff product theorem implies the axiom of choice. Fundam. Math. 37, 75–76 (1950)

    MathSciNet  MATH  Google Scholar 

  25. Littlewood, J.E.: Lectures on the Theory of Functions. Oxford University Press, Oxford (1944)

    MATH  Google Scholar 

  26. Loeb, P.A.: A new proof of the Tychonoff Theorem. Am. Math. Mon. 72(7), 711–717 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  27. Loeb, P.A.: Compactifications of Hausdorff spaces. Proc. Am. Math. Soc. 22, 627–634 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  28. Loeb, P.A.: Conversion from nonstandard to standard measure spaces and applications in probability theory. Trans. Am. Math. Soc. 211, 113–122 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  29. Loeb, P.A.: Applications of nonstandard analysis to ideal boundaries in potential theory. Isr. J. Math. 25, 154–187 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  30. Loeb, P.A.: Weak limits of measures and the standard part map. Proc. Am. Math. Soc. 77(1), 128–135 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. Loeb, P.A.: A construction of representing measures for elliptic and parabolic differential equations. Math. Ann. 260, 51–56 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Loeb, P.A.: A functional approach to nonstandard measure theory. In: Proceedings of the S. Kakutani Retirement Conference. Contemp. Math. 26, 251–261 (1984)

    MathSciNet  MATH  Google Scholar 

  33. Loeb, P.A., Talvila, E.: Covering lemmas and Lebesgue integration. Sci. Math. Jpn. 53, 209–221 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Loeb, P.A., Talvila, E.: Lusin’s theorem and Bochner integration. Sci. Math. Jpn. 60, 113–120 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Loeb, P.A., Wolff, M. (eds.): Nonstandard Analysis for the Working Mathematician, 2nd edn. Springer, Heidelberg (2015)

    MATH  Google Scholar 

  36. Lusin, N.: Sur les propriétés des fonctions mesurables. C. R. Acad. Sci. Paris 154, 1688–1690 (1912)

    MATH  Google Scholar 

  37. Luxemburg, W.A.J.: A general theory of monads. In: Luxemburg, W.A.J. (ed.) Applications of Model Theory to Algebra, Analysis, and Probability. Holt, Rinehart, and Winston, New York (1969)

    Google Scholar 

  38. Morse, A.P.: Perfect blankets. Trans. Am. Math. Soc. 61, 418–442 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nelson, E.: Internal set theory: a new approach to nonstandard analysis. Bull. Am. Math. Soc. 83, 1165–1198 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  40. Perkins, E.A.: A global intrinsic characterization of Brownian local time. Ann. Probab. 9, 800–817 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  41. Radó, T.: Sur un problème relatif à un théorème de Vitali”. Fundam. Math. 11, 228–229 (1928)

    MATH  Google Scholar 

  42. Raman-Sundström, M.: A pedagogical history of compactness. MAA Mon. 122, 619–635 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Reifenberg, E.F.: A problem on circles. Math. Gaz. 32, 290–292 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  44. Robinson, A.: Non-standard Analysis. North-Holland, Amsterdam (1966)

    MATH  Google Scholar 

  45. Royden, H.L.: Real Analysis, 3rd edn. Prentice Hall, New Jersey (1987)

    MATH  Google Scholar 

  46. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  47. Solovay, R.M.: A model of set-theory in which every set of reals is Lebesgue measurable. Ann. Math. 92(1), 1–56 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  48. Stroyan, K.D., Bayod, J.M.: Foundations of Infinitesimal Stochastic Analysis. North-Holland, Amsterdam (1986)

    MATH  Google Scholar 

  49. Stroyan, K.D., Luxemburg, W.A.J.: Introduction to the Theory of Infinitesimals. Academic, New York (1976)

    MATH  Google Scholar 

  50. Sullivan, J.M.: An explicit bound for the Besicovitch covering theorem. Geom. Anal. 4(2), 219–231 (1993)

    Article  MATH  Google Scholar 

  51. Sun, Y.N.: A theory of hyperfinite processes: the complete removal of individual uncertainty via exact LLN. J. Math. Econ. 29, 419–503 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tao, T.: Hilbert’s Fifth Problem and Related Topics. Graduate Studies in Mathematics, vol. 153. American Mathematical Society, Providence (2014)

    Google Scholar 

  53. Vakil, N.: Real Analysis Through Modern Infinitesimals. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Loeb, P.A. (2016). Topological Spaces. In: Real Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-30744-2_9

Download citation

Publish with us

Policies and ethics