Skip to main content

Nano-Sized Pattern Formation in Nonequilibrium Adsorptive Systems with Interacting Adsorbate

  • Conference paper
  • First Online:
Nanophysics, Nanophotonics, Surface Studies, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 183))

Abstract

We study the dynamics of the pattern formation in a class of adsorption/desorption systems described by the reaction-Cattaneo model (with memory effects of the diffusion flux). It is shown that pattern selection processes are realized in such systems due to the memory effects. We found that the oscillatory behavior of the radius of the adsorbate islands is governed by the finite propagation speed. It is shown that internal noise satisfying the fluctuation–dissipation relation governs transition toward disordered phase with chaotic spatial configuration. It is found that both period of stationary structures and corresponding correlation radius depend on the noise intensity. We have shown that spherical adsorbate islands are of nanometer range. The size of localized nano-clusters can be controlled by chemical reactions rates, interaction strength, and intensity of internal fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirota E, Sakakima H, Inomata K (2002) Giant magneto-resistance devices. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  2. Warburton RJ, Schäflein C, Haft D et al (2000) Nature 405:926

    Article  ADS  Google Scholar 

  3. Shah A, Torres P, Tscharner R et al (1999) Science 285:692

    Article  Google Scholar 

  4. Zhao L, Lo S, Zhang Y et al (2014) Nature 508:373

    Article  ADS  Google Scholar 

  5. Wadley HNG, Zhou X, Johnson RA et al (2001) Prog Mater Sci 46:329

    Article  Google Scholar 

  6. Sree Harsha KS (2006) Principles of physical vapor deposition of thin films. Elesevier, Amsterdam

    Google Scholar 

  7. Perotto G, Bello V, Cesca T et al (2010) Nucl Instrum Methods Phys Res B 268:3211

    Article  ADS  Google Scholar 

  8. Bernas H (2010) Nucl Instrum Methods Phys Res B 268:3171

    Article  ADS  Google Scholar 

  9. Bradley RM, Harper JME (1988) J Vac Sci Technol A 6(4):2390

    Article  ADS  Google Scholar 

  10. Karmakar P (2013) Nanostructures in thin films by keV ion beams. In: Som T, Kanjilal D (eds) Nanofabrication by ion-beam sputtering. Taylor & Francis Group, Boca Raton

    Google Scholar 

  11. Lian J, Zhou W, Wei QM et al (2006) Appl Phys Lett 88:093112

    Article  ADS  Google Scholar 

  12. Kharchenko DO, Kharchenko VO, Lysenko IO et al (2010) Phys Rev E 82:061108

    Article  ADS  Google Scholar 

  13. Kharchenko VO, Kharchenko DO (2011) Condens Matter Phys 14(2):23602

    Article  Google Scholar 

  14. Venables JA, Spiller GDT, HanbĂĽcken M (1984) Rep Prog Phys 47:399

    Article  ADS  Google Scholar 

  15. Pimpinelli A, Villian J (1998) Physics of crystal growth. Cambridge University Press, Cambridge

    Book  Google Scholar 

  16. Caflisch RE (2006) Proceedings of the international congress of mathematicians, Madrid, p 1419

    Google Scholar 

  17. Kharchenko DO, Kharchenko VO, Lysenko IO (2011) Phys Scr 83:045802

    Article  ADS  Google Scholar 

  18. Kharchenko DO, Kharchenko VO, Zhylenko TI et al (2013) Eur Phys J B 86(4):175

    Article  ADS  MathSciNet  Google Scholar 

  19. Kharchenko DO, Kharchenko VO, Kokhan SV (2014) Condens Matter Phys 17:33004

    Article  Google Scholar 

  20. Kharchenko VO, Kharchenko DO, Dvornichenko AV (2015) Eur Phys J B 88:3

    Article  ADS  Google Scholar 

  21. Zambelli T, Trost J, Wintterlin J, Ertl G (1996) Phys Rev Lett 76:795

    Article  ADS  Google Scholar 

  22. Gorodetskii V, Lauterbach J, Rotermund HA, Block JH, Ertl G (1994) Nature 370:276

    Article  ADS  Google Scholar 

  23. Kern K, Niehus H, Schatz A et al (1991) Phys Rev Lett 67:855

    Article  ADS  Google Scholar 

  24. Parker TM, Wilson LK, Condon NG, Leibsle FM (1997) Phys Rev B 56:6458

    Article  ADS  Google Scholar 

  25. Brune H, Giovannini M, Bromann K, Kern K (1998) Nature 394:451

    Article  ADS  Google Scholar 

  26. Clark PG, Friend CM (1999) J Chem Phys 111:6991

    Article  ADS  Google Scholar 

  27. Mo YM, Swartzentruber BS, Kariotis R et al (1989) Phys Rev Lett 63:2393

    Article  ADS  Google Scholar 

  28. Cirlin GE, Egorov VA, Sokolov LV, Werner P (2002) Semiconductors 36(11):1294–1298

    Article  ADS  Google Scholar 

  29. Bucher JP, Hahn E, Fernandez P, Massobrio C, Kern K (1994) Europhys Lett 27:473

    Article  ADS  Google Scholar 

  30. Besenbacher F, Nielsen LP, Sprunger PT (1997) Surface alloying in heteroepitaxial metal-on-metal growth. In: King DA, Woodruff DP (eds) The chemical physics of solid surfaces, Chap. 6. Elsevier, Amsterdam, p 207

    Google Scholar 

  31. Brune H (1998) Surf Sci Rep 31:121–229

    Article  ADS  Google Scholar 

  32. Pohl K, Bartelt MC, de la Figuera J et al (1999) Nature 397:238

    Article  ADS  Google Scholar 

  33. Mikhailov A, Ertl G (1994) Chem Phys Lett 238:104

    Article  ADS  Google Scholar 

  34. Batogkh D, Hildebrant M, Krischer F, Mikhailov A (1997) Phys Rep 288:435

    Article  ADS  Google Scholar 

  35. Hildebrand M, Mikhailov AS, Ertl G (1998) Phys Rev E 58:5483(11)

    Article  ADS  Google Scholar 

  36. Mangioni SE, Wio HS (2005) Phys Rev E 71:056203

    Article  ADS  Google Scholar 

  37. Mangioni SE (2010) Physica A 389:1799

    Article  ADS  Google Scholar 

  38. Casal SB, Wio HS, Mangioni S (2002) Physica A 311:443

    Article  ADS  Google Scholar 

  39. Wolgraef D (2002) Physica E 15:33

    Article  ADS  Google Scholar 

  40. Wolgraef D (2003) Physica E 18:393

    Article  ADS  Google Scholar 

  41. Wolgraef D (2004) Int J Quantum Chem 98:248

    Article  Google Scholar 

  42. Hildebrand M, Mikhailov AS, Ertl G (1998) Phys Rev Lett 81:2602(4)

    Article  ADS  Google Scholar 

  43. Hildebrand M, Mikhailov AS (1996) J Phys Chem 100:19089

    Article  Google Scholar 

  44. Kharchenko D, Kharchenko V, Lysenko I (2011) Cent Eur J Phys 9(3):698

    Google Scholar 

  45. Lecoq N, Zapolsky H, Galenko P (2009) Eur Phys J Spec Top 177:165

    Article  Google Scholar 

  46. Galenko PK, Kharchenko D, Lysenko I (2010) Physica A 389:3443

    Article  ADS  Google Scholar 

  47. Kharchenko VO, Kharchenko DO, Kokhan SV et al (2012) Phys Scr 86:055401

    Article  Google Scholar 

  48. Kharchenko VO, Kharchenko DO (2012) Phys Rev E 86:041143

    Article  ADS  Google Scholar 

  49. Kharchenko VO, Kharchenko DO, Dvornichenko AV (2014) Surf Sci 630:158

    Article  ADS  Google Scholar 

  50. Miguel MS, Sancho JM (1980) J Stat Phys 22:605

    Article  ADS  Google Scholar 

  51. Sancho JM, Miguel MS, DĂĽrr D (1982) J Stat Phys 28(2):291

    Article  ADS  Google Scholar 

  52. Van Kampen NG (1992) Stochastic processes in physics and chemistry. North–Holland, Amsterdam

    MATH  Google Scholar 

  53. Olemskoi AI, Kharchenko DO, Knyaz’ IA (2005) Phys Rev E 71:041101

    Google Scholar 

  54. Shapiro VE (1993) Phys Rev E 48:109

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitrii Kharchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kharchenko, D., Kharchenko, V. (2016). Nano-Sized Pattern Formation in Nonequilibrium Adsorptive Systems with Interacting Adsorbate. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanophotonics, Surface Studies, and Applications. Springer Proceedings in Physics, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-319-30737-4_7

Download citation

Publish with us

Policies and ethics