Skip to main content

The Study of Properties of Paracetamol Clusters: MD Simulations

  • Conference paper
  • First Online:
Nanophysics, Nanophotonics, Surface Studies, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 183))

  • 685 Accesses

Abstract

Paracetamol is a well-known medicament. In this work, we investigate the behavior of paracetamol molecules in the clusters composed of 30 and 80 molecules. We have studied both systems over a wide range of temperatures, from 100 K up to 600 K.

Several dynamical and structural observables, such as mean square displacement and radial distribution function, were obtained, presented, and discussed. We indicate differences in dynamics of molecules in the case of a cluster where the internal core was formed, comparing to this one where the number of molecules was too small to create the inner core.

Moreover, the properties of the clusters were compared with the bulk sample, where 600 paracetamol molecules were placed inside the cubic box and the periodic boundary conditions had been applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dar AI, Saxena RC (2013) Novel herbs for liver disorders: paracetamol induced hepatotoxicity and its herbal remedy. LAP LAMBERT Academic Publishing, Saarbrücken

    Google Scholar 

  2. Prescott LF (1996) Paracetamol (Acetaminophen): a critical bibliographic review. CRC Press, London

    Google Scholar 

  3. Pacifici GM, Allegaert K (2015) Clinical pharmacology of paracetamol in neonates: a review. Curr Ther Res Clin Exp 77:24–30. doi:10.1016/j.curtheres.2014.12.001

    Article  Google Scholar 

  4. Gburski Z, Raczynski P (2010) Influence of carbon nanotube on cholesterol lodgment: molecular dynamics simulation. Rev Adv Mater Sci 23:64–69

    Google Scholar 

  5. Teng Y, Fan L, Dai Y, Zhong M, Lu X, Kan X (2015) Electrochemical sensor for paracetamol recognition and detection based on catalytic and imprinted composite film. Biosens Bioelectron 71:137–142. doi:10.1016/j.bios.2015.04.037

    Article  Google Scholar 

  6. Mendez-Albores A, Tarin C, Rebollar-Perez G, Dominguez-Ramirez L, Torres E (2015) Biocatalytic spectrophotometric method to detect paracetamol in water samples. J Environ Sci Health A Tox Hazard Subst Environ Eng 50:1046–1056. doi:10.1080/10934529.2015.1038179

    Article  Google Scholar 

  7. de Fays L, Van Malderen K, De Smet K, Sawchik J, Verlinden V, Hamdani J, Dogne J-M, Dan B (2015) Use of paracetamol during pregnancy and child neurological development. Dev Med Child Neurol 57:718–724. doi:10.1111/dmcn.12745

    Article  Google Scholar 

  8. Raczynski P, Dawid A, Gburski Z (2007) Molecular dynamics (MD) in homocysteine nanosystems—computer simulation. Biomol Eng 24:577–581. doi:10.1016/j.bioeng.2007.08.011

    Article  Google Scholar 

  9. Brozek W, Hassler N, Varga F, Klaushofer K, Paschalis EP (2012) Effect of bisphosphonates on gene expression of fibroblasts cultured in the presence of homocysteine. Bone 51:S8–S8. doi:10.1016/j.bone.2012.08.021

    Article  Google Scholar 

  10. Huang C, Zhang L, Wang Z, Pan H, Zhu J (2011) Endothelial progenitor cells are associated with plasma homocysteine in coronary artery disease. Acta Cardiol 66:773–777. doi:10.2143/AC.66.6.2136962

    Google Scholar 

  11. Raczynski P, Gorny K, Samios J, Gburski Z (2014) Interaction between silicon–carbide nanotube and cholesterol domain. A molecular dynamics simulation study. J Phys Chem C 118:30115–30119. doi:10.1021/jp505532f

    Article  Google Scholar 

  12. Phillips MC (2013) Thematic review series: high density lipoprotein structure, function, and metabolism new insights into the determination of HDL structure by apolipoproteins. J Lipid Res 54:2034–2048. doi:10.1194/jlr.R034025

    Article  Google Scholar 

  13. Fielding C, Fielding P (1995) Molecular physiology of reverse cholesterol transport. J Lipid Res 36:211–228

    Google Scholar 

  14. Gburski Z, Górny K, Raczynski P (2010) The impact of a carbon nanotube on the cholesterol domain localized on a protein surface. Solid State Commun 150:415–418. doi:10.1016/j.ssc.2009.12.005

    Article  ADS  Google Scholar 

  15. Xu X-T, Tang F-L, Xue H-T, Yu W-Y, Zhu L, Rui Z-Y (2015) Molecular dynamics simulations of void shrinkage in gamma-TiAl single crystal. Comput Mater Sci 107:58–65. doi:10.1016/j.commatsci.2015.05.007

    Article  Google Scholar 

  16. Volz SG, Chen G (1999) Molecular dynamics simulation of thermal conductivity of silicon nanowires. Appl Phys Lett 75:2056–2058. doi:10.1063/1.124914

    Article  ADS  Google Scholar 

  17. Raczynski P, Dawid A, Dendzik Z, Gburski Z (2005) Dielectric relaxation in water–cholesterol mixture cluster: molecular dynamics simulation. J Mol Struct 750:18–21. doi:10.1016/j.molstruc.2005.03.036

    Article  ADS  Google Scholar 

  18. Yamakov V, Wolf D, Phillpot SR, Gleiter H (2002) Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation. Acta Mater 50:61–73. doi:10.1016/S1359-6454(01)00329-9

    Article  Google Scholar 

  19. Berneche S, Roux B (2000) Molecular dynamics of the KcsA K+ channel in a bilayer membrane. Biophys J 78:2900–2917

    Article  Google Scholar 

  20. Gorny K, Dendzik Z, Raczynski P, Gburski Z (2012) Dynamic properties of propylene glycol confined in ZSM-5 zeolite matrix—A computer simulation study. Solid State Commun 152:8–12. doi:10.1016/j.ssc.2011.10.020

    Article  ADS  Google Scholar 

  21. Skoulidas AI, Sholl DS (2005) Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations. J Phys Chem B 109:15760–15768. doi:10.1021/jp051771y

    Article  Google Scholar 

  22. Borodin O (2009) Polarizable force field development and molecular dynamics simulations of ionic liquids. J Phys Chem B 113:11463–11478. doi:10.1021/jp905220k

    Article  Google Scholar 

  23. Freddolino PL, Liu F, Gruebele M, Schulten K (2008) Ten-microsecond molecular dynamics simulation of a fast-folding WW domain. Biophys J 94:L75–L77. doi:10.1529/biophysj.108.131565

    Article  Google Scholar 

  24. Dendzik Z, Kosmider M, Raczynski P, Piatek A (2007) Interaction induced absorption of rare gas mixtures physisorbed on nanotubes and fullerenes—computer simulation study. J Non-Cryst Solids 353:4586–4590. doi:10.1016/j.jnoncrysol.2007.03.042

    Article  ADS  Google Scholar 

  25. Greiner M, Elts E, Schneider J, Reuter K, Briesen H (2014) Dissolution study of active pharmaceutical ingredients using molecular dynamics simulations with classical force fields. J Cryst Growth 405:122–130. doi:10.1016/j.jcrysgro.2014.07.046

    Article  ADS  Google Scholar 

  26. Nademi Y, Iranagh SA, Yousefpour A, Mousavi SZ, Modarress H (2014) Molecular dynamics simulations and free energy profile of paracetamol in DPPC and DMPC lipid bilayers. J Chem Sci 126:637–647. doi:10.1007/s12039-013-0556-x

    Article  Google Scholar 

  27. Lim W, Feng YP, Liu XY (2005) Molecular dynamics simulation of paracetamol molecules ordering around glycogen. Phys Rev E 71:051604. doi:10.1103/PhysRevE.71.051604

    Article  ADS  Google Scholar 

  28. Ohlsson A, Shah PS (2015) Paracetamol (acetaminophen) for prevention or treatment of pain in newborns. Cochrane Database Syst Rev 6:CD011219. doi:10.1002/14651858.CD011219.pub2

    Google Scholar 

  29. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr (2010) CHARMM general force field: a force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields. J Comput Chem 31:671–690. doi:10.1002/jcc.21367

    Google Scholar 

  30. Yu W, He X, Vanommeslaeghe K, MacKerell AD (2012) Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem 33:2451–2468. doi:10.1002/jcc.23067

    Article  Google Scholar 

  31. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. doi:10.1002/jcc.20289

    Article  Google Scholar 

  32. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312. doi:10.1006/jcph.1999.6201

    Article  ADS  MATH  Google Scholar 

  33. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14:33–38. doi:10.1016/0263-7855(96)00018-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violetta Raczyńska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Raczyńska, V., Gburski, Z. (2016). The Study of Properties of Paracetamol Clusters: MD Simulations. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanophotonics, Surface Studies, and Applications. Springer Proceedings in Physics, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-319-30737-4_4

Download citation

Publish with us

Policies and ethics