Skip to main content

Comparative Study of Ferromagnetic and Superparamagnetic Iron Oxide Nanoparticles Loaded with Antitumor Drug Doxorubicin

  • Conference paper
  • First Online:
Nanophysics, Nanophotonics, Surface Studies, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 183))

  • 646 Accesses

Abstract

In this paper we have studied the physical properties of magnetic nanocomplexes (MNCs) consisting of ferromagnetic iron oxide nanoparticles (FMION) or superparamagnetic iron oxide nanoparticles (SPION) loaded with antitumor drug doxorubicin (DOXO). The methods of magnetometry, electron paramagnetic resonance spectra, and absorption spectroscopy were used. The changes of electromagnetic waves from SPION and FMION under the influence of constant magnetic field (CMF) were analyzed. It was observed that MNC containing SPION and DOXO has larger coercivity as compared to MNC of FMION and DOXO. MNC comprising of SPION and DOXO has g-factors of 2.00, 2.30, and 4.00. MNC of FMION and DOXO has the g-factor of 2.50, and the integrated intensity of electron spin resonance signal is higher. MNC containing SPION and DOXO has absorption maximum shifts in the region (465–480) nm. MNC of FMION and DOXO has the absorption maximum in the range of (390–430) nm. On average the intensity of an alternating magnetic field (AMF) at different values of CMF is higher when SPION is used than FMION. The results presented here along with our earlier biological results open up promising prospects for future studies of cancer magnetic nanotherapy using MNC of SPION and DOXO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayashi K, Nakamura M, Sakamoto W et al (2013) Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics 3(6):366–376

    Article  Google Scholar 

  2. Ortega D, Pankhurst QA (2013) Magnetic hyperthermia. In: O’Brien P (ed) Nanoscience, vol 1, Nanostructures through chemistry. Royal Society of Chemistry, Cambridge, pp 60–88. doi:10.1039/9781849734844-00060

    Google Scholar 

  3. Giustini AJ, Petryk AA, Cassim SM et al (2010) Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life 1(01n02):17–32. doi:10.1142/S1793984410000067

    Article  Google Scholar 

  4. Dutz S, Hergt R (2013) Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int J Hyperthermia 29(8):790–800

    Article  Google Scholar 

  5. Orel V, Shevchenko A, Romanov A et al (2015) Magnetic properties and antitumor effect of nanocomplexes of iron oxide and doxorubicin. Nanomed Nanotech Biol Med 11(1):47–55

    Article  Google Scholar 

  6. Zhang H, Ji Z, Xia T et al (2012) Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6(5):4349–4368. doi:10.1021/nn3010087

    Article  Google Scholar 

  7. Burello E, Worth AP (2011) A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 5(2):228–235. doi:10.3109/17435390.2010.502980

    Article  Google Scholar 

  8. Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85(4):543–556

    Article  ADS  Google Scholar 

  9. Ghodbane S, Lahbib A, Ammari M et al (2015) Does static magnetic field-exposure induced oxidative stress and apoptosis in rat kidney and muscle? Effect of vitamin E and selenium supplementations. Gen Physiol Biophys 34:217–219

    Article  Google Scholar 

  10. Okano H (2008) Effects of static magnetic fields in biology: role of free radicals. Front Biosci 13:6106–6125

    Article  Google Scholar 

  11. Chomoucka J, Drbohlavova J, Huska D (2010) Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 62(2):144–149. doi:10.1016/j.phrs.2010.01.014

    Article  Google Scholar 

  12. Hayashi K, Moriya M, Sakamoto W et al (2009) Chemoselective synthesis of folic acid-functionalized magnetite nanoparticles via click chemistry for magnetic hyperthermia. Chem Mater 21:1318–1325

    Article  Google Scholar 

  13. Bedanta S, Kleemann W (2009) Supermagnetism. J Phys D Appl Phys 42(1):013001. doi:10.1088/0022-3727/42/1/013001

    Article  ADS  Google Scholar 

  14. Orel V, Romanov A, Rykhalskyi A (2016) Antitumor effect of superparamagnetic iron oxide nanoparticles conjugated with doxorubicin during magnetic nanotherapy of Lewis lung carcinoma. Materialwiss Werkstofftech 47:165–171

    Article  Google Scholar 

  15. Orel VE, Shevchenko AD, Rykhalskyi OY (2015) Investigation of nonlinear magnetic properties magneto-mechano-chemical synthesized nanocomplex from magnetite and antitumor antibiotic doxorubicin. In: Fesenko O, Yatsenko L (eds) Nanocomposites, nanophotonics, nanobiotechnology and applications. Springer Proceedings in Physics, vol 156. pp 103–110. doi:10.1007/978-3-319-06611-0_8

    Google Scholar 

  16. Laurent S, Mahmoudi M (2011) Superparamagnetic iron oxide nanoparticles and cancer. Int J Mol Epidemiol Genet 2(4):367–390

    Google Scholar 

  17. Nikolov N, Orel V, Smolanka I et al (2008) Apparatus for short-wave inductothermy “Magnetotherm”. In: Katushev A, Dekhtyar Y, Spigulis J (eds) Proceedings of NBC. Springer, Berlin, pp 294–298

    Google Scholar 

  18. Orel VE, Dzyatkovskaya NN, Kruchkov EI et al (2014) The effect of the inhomogeneous magnetic fields on the antitumor activity of magnetic nanotherapy. In: 2014 I.E. 34th International Conference on Electronics and Nanotechnology (ELNANO), pp 329–333. doi:10.1109/ELNANO.2014.6873909

  19. Panchuk RR, Prylutska SV, Chumak VV et al (2015) Application of С60 fullerene-doxorubicin complex for tumor cell treatment in vitro and in vivo. J Biomed Nanotechnol 11(7):1139–1152

    Article  Google Scholar 

  20. Prylutskyy YI, Evstigneev MP, Pashkova IS et al (2014) Characterization of C60 fullerene complexation with antibiotic doxorubicin. Phys Chem Chem Phys 16(42):23164–23172

    Article  Google Scholar 

  21. Prylutskyy YI, Evstigneev MP, Cherepanov VV et al (2015) Structural organization of С60 fullerene, doxorubicin and their complex in physiological solution as promising antitumor agents. J Nanopart Res 17(1):45–49

    Article  Google Scholar 

  22. Ustinov VV, Rinkevich AB, Perov DV et al (2013) Giant antiresonance in electromagnetic wave reflection from a 3D structure with ferrite spinel nanoparticles. Tech Phys 58(4):568–577

    Article  Google Scholar 

  23. Orel VE, Romanov AV (2014) Cancer magnetic nanotherapy. LAP Lambert Academic, Saarbrücken

    Google Scholar 

  24. Liu H, Li XZ, Leng YJ, Wang C (2007) Kinetic modeling of electro-Fenton reaction in aqueous solution. Water Res 41:161–167

    Google Scholar 

  25. Orel VE, Kudryavets YI, Bezdenezhnih NA et al (2005) Mechanochemically activated doxorubicin nanoparticles in combination with 40MHz frequency irradiation on A-549 lung carcinoma cells. Drug Deliv 12(3):171–178

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shevchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Orel, V. et al. (2016). Comparative Study of Ferromagnetic and Superparamagnetic Iron Oxide Nanoparticles Loaded with Antitumor Drug Doxorubicin. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanophotonics, Surface Studies, and Applications. Springer Proceedings in Physics, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-319-30737-4_27

Download citation

Publish with us

Policies and ethics