Skip to main content

Comparison of Stability Properties of Nanozirconia Aqueous Suspension in the Presence of Selected Biopolymers

  • Conference paper
  • First Online:
Nanophysics, Nanophotonics, Surface Studies, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 183))

Abstract

The effects of biopolymer type and solution pH on the adsorption mechanism on the nanozirconia surface were examined. Three natural polymers, bovine serum albumin (BSA), lysozyme (LSZ) and bacterial polysaccharide (EPS), were applied. The adsorption, surface charge, zeta potential and stability measurements were carried out in the pH range 3–10. The largest adsorption was found for EPS at pH 3 and the lowest for BSA at pH 3. Both EPS and BSA (of low internal stability) binding with the solid surface proceeds due to both electrostatic forces and hydrogen bridges formation. LSZ at pH 3 does not adsorb on the zirconia surface (electrostatic repulsion prevents binding of high internal stability protein). Lysozyme has the greatest influence on the zirconia suspension stability at pH 9 (deterioration of system stability as a result of solid surface charge neutralization by adsorbed LSZ). The BSA adsorption causes an insignificant increase of the ZrO2 suspension stability, which is connected with electrosteric forces appearance. The exopolysaccharide presence results in slight decrease of the solid system stability (polymer bridges formation at pH 6 and 9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhardwaj A, Bhardwaj A, Misuriya A, Maroli S, Manjula S, Singh AK (2014) Nanotechnology in dentistry: present and future. J Int Oral Health 6:121–126

    Google Scholar 

  2. Gupta J (2011) Nanotechnology applications in medicine and dentistry. J Invest Clin Dent 2:81–88

    Article  Google Scholar 

  3. Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71

    Article  Google Scholar 

  4. Najim TS, Salim AJ (2014) Polyaniline nanofibers and nanocomposites: preparation, characterization, and application for Cr(VI) and phosphate ions removal from aqueous solution. Arabian J Chem. doi:10.1016/j.arabjc.2014.02.008

    Google Scholar 

  5. Raj S, Jose S, Sumod US, Sabitha M (2012) Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci 4:186–193

    Article  Google Scholar 

  6. Egusquiaguirre SP, Igartua M, Hernández RM, Pedraz JL (2012) Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Transl Oncol 14:83–93

    Article  Google Scholar 

  7. Lee PY, Wong KK (2011) Nanomedicine: a new frontier in cancer therapeutics. Curr Drug Deliv 8:245–253

    Article  Google Scholar 

  8. Misra R, Acharya S, Sahoo SK (2010) Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today 15:842–850

    Article  Google Scholar 

  9. Wang X, Wang Y, Chen ZG, Shin DM (2009) Advances of cancer therapy by nanotechnology. Cancer Res Treat 41:1–11

    Article  Google Scholar 

  10. Quiquampoix H, Burns RG (2007) Interactions between proteins and soil mineral surfaces: environmental and health consequences. Elements 3:401–416

    Article  Google Scholar 

  11. Salinas AJ, Vallet-Regi M (2007) Evolution of ceramics with medical applications. Z Anorg Allg Chem 633:1762–1773

    Article  Google Scholar 

  12. Silva-Bermudez P, Rodil SE (2013) An overview of protein adsorption on metal oxide coatings for biomedical implants. Surf Coat Technol 233:147–158

    Article  Google Scholar 

  13. Werner C, Maitz MF, Sperling C (2007) Current strategies towards hemocompatible coatings. J Mater Chem 17:3376–3384

    Article  Google Scholar 

  14. Vallet-Regi M (2006) Ordered mesoporous materials in the context of drug delivery systems and tissue engineering. Chem Eur J 12:1–11

    Article  Google Scholar 

  15. Vallet-Regi M, Arcos D (2006) Nanostructured hybrid material for bone tissue regeneration. Curr Nanosci 2:179–189

    Article  ADS  Google Scholar 

  16. Szewczuk-Karpisz K, Wiśniewska M, Myśliwiec D (2015) Albumin adsorption influence on the stability of the mesoporous zirconia suspension. J Ind Eng Chem 32:113. doi:10.1016/j.jiec.2015.08.005

    Article  Google Scholar 

  17. Dawson RMC (1986) Data for biochemical research, 3rd edn. Clarendon, Oxford

    Google Scholar 

  18. Reed RG, Putnam FW, Peters T (1980) Sequence of residues 400–403 of bovine serum albumin. Biochem J 191:867–868

    Article  Google Scholar 

  19. Canfield RE (1963) The amino acid sequence of egg white lysozyme. J Biol Chem 238:2698–2707

    Google Scholar 

  20. Watter LR (1951) Immunological studies on egg white proteins: IV. Immunochemical and physical studies of lysozyme. J Biol Chem 192:237–242

    Google Scholar 

  21. Reinhold BB, Chan SY, Reuber TL, Marra A, Walker GC, Reinhold VN (1994) Detailed structural characterization of succinoglycan, the major exopolysaccharide II of Rhizobium meliloti Rm1021. J Bacteriol 176:1997–2002

    Google Scholar 

  22. Gharzouli R, Cerpene MA, Couderc F, Benguedouar A, Poinsot V (2013) Relevance of fucose-rich extracellular polysaccharides produced by Rhizobium sullae strains nodulating Hedysarum coronarium L. legumes. Appl Environ Microbiol 79:1765–1776

    Article  Google Scholar 

  23. Szewczuk-Karpisz K, Wiśniewska M, Pac M, Choma A, Komaniecka I (2014) Sinorhizobium meliloti 1021 exopolysaccharide as a flocculant improving chromium(III) oxide removal from aqueous solutions. Water Air Soil Pollut 225:2052

    Article  Google Scholar 

  24. Janusz W (1999) Electrical double layer at metal oxide-electrolyte interface in ‘interfacial forces and fields theory and applications’. M. Dekker, New York

    Google Scholar 

  25. Dubois M, Gilles KA, Hamilton J et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  Google Scholar 

  26. Hartvig RA, Van de Weert M, Ostergaard J et al (2011) Protein adsorption at charged surfaces: the role of electrostatic interactions and interfacial charge regulation. Langmuir 27:2634–2643

    Article  Google Scholar 

  27. Chibowski S, Patkowski J, Grządka E (2009) Adsorption of polyethyleneimine and polymethacrylic acid onto synthesized hematite. J Colloid Interf Sci 329:1–10

    Article  Google Scholar 

  28. Ostolska I, Wiśniewska M (2015) Investigation of the colloidal Cr2O3 removal possibilities from aqueous solution using the ionic polyamino acid block copolymers. J Hazard Mater 290:69–77

    Article  Google Scholar 

  29. Rezwan K, Meier LP, Rezwan M et al (2004) Bovine serum albumin adsorption onto colloidal Al2O3 particles: a new model based on zeta potential and UV–Vis measurements. Langmuir 20:10055–10061

    Article  Google Scholar 

  30. Khan MY (1986) Direct evidence for the involvement of domain III in the N–F transition of bovine serum albumin. Biochem J 236:307–310

    Article  Google Scholar 

  31. Ogasahara K, Hamagichi K (1966) Structure of lysozyme: XII. Effect of pH on the stability of lysozyme. J Biochem 61(2):199–210

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Wiśniewska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wiśniewska, M., Szewczuk-Karpisz, K. (2016). Comparison of Stability Properties of Nanozirconia Aqueous Suspension in the Presence of Selected Biopolymers. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanophotonics, Surface Studies, and Applications. Springer Proceedings in Physics, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-319-30737-4_22

Download citation

Publish with us

Policies and ethics