Skip to main content

Large-Scale Solution for Superhydrophobic Surfaces

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 183))

Abstract

The approach to the production of nontransparent superhydrophobic coatings on large surfaces, which are produced by one-step coating process using conventional equipment for the paint and coatings industry, was developed. The surface of the coatings was statistically organized by the use of micro- and nanoscale fillers through introduction of appropriate dimensions. This allows achieving superior superhydrophobic properties of the material: a water contact angle (WCA) 160°, a water contact angle hysteresis (CAH)—not more than 4°—and a water sliding angle (WSA), not more than 2°. Such coatings possess high resistance to cracking and abrasion. This approach can be used for the creation of protective water-repellent coatings in construction industry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CAH:

Water contact angle hysteresis

SBM:

Poly(styrene-butyl methacrylate)

SEM:

Scanning electron microscopy

WCA:

Water contact angle

WSA:

Water sliding angle

References

  1. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  Google Scholar 

  2. Wenzel RN (1949) Surface roughness and contact angle. J Phys Chem 53(9):1466–1467

    Article  Google Scholar 

  3. Nosonovsky M, Bhushan B (2008) Roughness-induced superhydrophobicity: a way to design non-adhesive surfaces. J Phys Condens Matter 20:225009

    Article  ADS  Google Scholar 

  4. Synytska A, Ionov L, Dutschk V, Stamm M, Grundke K (2008) Wetting on regularly structured surfaces from “Core–Shell” particles: theoretical predictions and experimental findings. Langmuir 24:11895–11901

    Article  Google Scholar 

  5. Tuteja A, Choi W, McKinley GH, Cohen RE, Rubner MF (2008) Design parameters for superhydrophobicity and superoleophobicity. MRS Bull 33:752–758

    Article  Google Scholar 

  6. Papadopoulos P, Mammen L, Deng X, Vollmer D, Butt HJ (2013) How superhydrophobicity breaks down. Proc Natl Acad Sci 10(9):3254–3258

    Article  ADS  Google Scholar 

  7. He B, Patankar NA, Lee J (2003) Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir 19:4999–5003

    Article  Google Scholar 

  8. Lay Y, Lin C, Wang H, Huang J, Zhuang H (2008) Superhydrophilic-superhydrophobic micropattern on TiO2 nanotube films by photocatalytic lithography. Electrochem Commun 10:387–391

    Article  Google Scholar 

  9. Zhou Y, He B, Yang Y, Wang F, Liu W, Wang P, Zhang W, Bello I, Lee ST (2011) Construct hierarchical superhydrophobic silicon surfaces by chemical etching. J Nanosci Nanotechnol 11(3):2292–2297

    Article  Google Scholar 

  10. Chun DM, Davaasuren G, Ngo CV, Kim CS (2014) Fabrication of transparent superhydrophobic surface on thermoplastic polymer using laser beam machining and compression molding for mass production. Manuf Technol 63(1):525–528

    Article  Google Scholar 

  11. D’Acunzi M, Mammen L, Singh M, Deng X, Roth M, Auernhammer GK, Butt HJ, Vollmer D (2010) Superhydrophobic surfaces by hybrid raspberry-like particles. Faraday Discuss 146:35–48

    Article  ADS  Google Scholar 

  12. Wang R, Liu H, Wang F (2013) Facile preparation of raspberry-like superhydrophobic polystyrene particles via seeded dispersion polymerization. Langmuir 29(36):11440–11448

    Article  Google Scholar 

  13. Erbil HY, Demirel AL, Avci Y, Mert O (2003) Transformation of a simple plastic into a superhydrophobic surface. Science 299:1377–1380

    Article  Google Scholar 

  14. Tu CW, Tsai CH, Wang CF, Kuo SW, Chang FC (2007) Fabrication of superhydrophobic and superoleophilic polystyrene surfaces by a facile one-step method. Macromol Rapid Commun 28:2262–2266

    Article  Google Scholar 

  15. Yang Q, Luo Z, Tan S, Luo Y, Wang Y, Zhang Z, Liu W (2014) Well-ordered polymer nano-fibers with self-cleaning property by disturbing crystallization process. Nanoscale Res Lett 9(1):352

    Article  ADS  Google Scholar 

  16. Zhang Y, Sundararajan S (2008) Superhydrophobic engineering surfaces with tunable air-trapping ability. J Micromech Microeng 18(3):035024

    Article  Google Scholar 

  17. Tsai PS, Yang YM, Lee YL (2007) Hierarchically structured superhydrophobic coatings fabricated by successive Langmuir-Blodgett deposition of micro-/nano-sized particles and surface silanization. Nanotechnology 18(46):465604

    Article  ADS  Google Scholar 

  18. Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3:3468–3517

    Article  ADS  Google Scholar 

  19. Teisala H, Tuominen M, Kuusipalo J (2011) Adhesion mechanism of water droplets on hierarchically rough superhydrophobic rose petal surface. J Nanomater 2011:818707

    Article  Google Scholar 

  20. Zhang X, Di Q, Zhu F, Sun G, Zhang H (2013) Superhydrophobic micro/nano dual-scale structures. J Nanosci Nanotechnol 13(2):1539–1542

    Article  Google Scholar 

  21. Yoon Y, Kim D, Lee JB (2014) Hierarchical micro/nano structures for super-hydrophobic surfaces and super-lyophobic surface against liquid metal. Micro Nano Syst Lett 2(1):1–18

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to the organizing committee of the Conference of Nanotechnology and Nanomaterials (NANO-2015), which was held in the framework of the FP7 project Nanotwinning, for the opportunity to publish our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Raks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Myronyuk, O.V., Prydatko, A.V., Raks, V.A. (2016). Large-Scale Solution for Superhydrophobic Surfaces. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanophotonics, Surface Studies, and Applications. Springer Proceedings in Physics, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-319-30737-4_21

Download citation

Publish with us

Policies and ethics