Skip to main content

Effect of Concentrated Light on Boron Nitride Nanostructures Formation

  • Conference paper
  • First Online:
Nanophysics, Nanophotonics, Surface Studies, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 183))

Abstract

The goal of this work is to synthesize and research the properties of boron nitride powder produced under the effect of concentrated light in a flow of nitrogen in a xenon high-flux optical furnace. An effect of concentrated light on properties, morphology, and structure formation was demonstrated. The “gaseous model” based on an evolution of the bubble was used for explanation of morphology formation. Burst of these bubbles may result in graphene-like structure formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyers RA (ed) (2012) Encyclopedia of sustainability science and technology. Springer, New York. doi:10.1007/978-1-4419-0851-3

  2. Ahmad SQS, Hand RJ, Wieckert C (2014) Use of concentrated radiation for solar powered glass melting experiments. Sol Energy 109:174–182

    Article  ADS  Google Scholar 

  3. Sartinska LL et al (2008) Transformation of fine-grained graphite-like boron nitride induced by concentrated light energy. Mater Chem Phys 109:20–25

    Article  Google Scholar 

  4. Sarwar J, Georgakis G, LaChance R, Ozalp N (2014) Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications. Sol Energy 100:179–194

    Article  ADS  Google Scholar 

  5. Paine RT, Narula CK (1990) Synthetic routes to boron nitride. Chem Rev 90:73–91

    Article  Google Scholar 

  6. Moussa G et al (2014) Nanostructured boron nitride: from molecular design to hydrogen storage application. Inorganics 2:396–409

    Article  MathSciNet  Google Scholar 

  7. Oku T (2013) Synthesis, atomic structures adn properties of boron nitride nanotubes. In: Suzuki S (ed) Nanotechnology and nanomaterials “physical and chemical properties f carbon nanotubes”, ISBN 978-953-51-1002-6, Published: February 27, 2013 under CC BY 3.0 license. doi: 10.5772/51968

    Google Scholar 

  8. Rubio A, Corkill JL, Cohen ML (1994) Theory of graphitic boron nitride nanotubes. Phys Rev B 49:5081–5084

    Article  ADS  Google Scholar 

  9. Chkhartishvili L (2009) Boron nitride nanosystems of regular geometry. J Phys Conf Ser 176:1–17

    Google Scholar 

  10. Chkhartishvili L, Murusidze I (2012) Relative stability of BN nanotubes. Solid State Sci 14:1664–1668

    Article  ADS  Google Scholar 

  11. Sartinska LL (2011) Catalyst-free synthesis of nanotubes and whiskers in an optical furnace and a gaseous model for their formation and growth. Acta Mater 59:4395–4403

    Article  Google Scholar 

  12. Sartinska LL et al (2015) Effect of moisture on the properties and structure formation of BN under concentrated light. Eur Chem Bull 4:165–168

    Google Scholar 

  13. Sartinska LL (2015) Surface modification to test ‘gaseous model’ for BN nanotubes formation under the concentrated light and its application for graphene. Superlattice Microst 85:392–400

    Article  ADS  Google Scholar 

  14. Bao K et al (2009) Synthesis of highly crystalline rhombohedral BN triangular nanoplates via a convenient solid state reaction. J Solid State Chem 182:925–931

    Article  ADS  Google Scholar 

  15. Wang L, Hang R, Xu Y, Guo C, Qian Y (2014) From ultrathin nanosheets, triangular plates to nanocrystals with exposed (102) facets, a morphology and phase transformation of sp2 hybrid BN nanomaterials. RSC Adv 4:14233

    Article  Google Scholar 

  16. Yeadon M et al (2003) Direct observation of boron nitride nanocage growth by molecular beam nitridation and liquid-like motion of Fe-B nanoparticles. J Mater Chem 13:2573

    Article  Google Scholar 

  17. Narita I, Oku T (2003) Synthesis of boron nitride nanotubes by using NbB2, YB6 and YB6/Ni powders. Diam Relat Mater 12:1912–1917

    Article  ADS  Google Scholar 

  18. Chkhartishvili L, Murusidze I (2010) Molar binding energy of zigzag and armchair single-walled boron nitride nanotubes. Mater Sci Appl 1:223–246

    Google Scholar 

  19. Hao X et al (2002) The effect of temperature on the synthesis of BN nanocrystals. J Cryst Growth 241:124–128

    Article  ADS  Google Scholar 

  20. Gorbachev RV et al (2011) Hunting for monolayer boron nitride: optical and Raman signatures. Small 7:465–468

    Article  Google Scholar 

  21. Arenal R et al (2006) Raman spectroscopy of single-wall boron nitride nanotubes. Nano Lett 6:1812–1816

    Article  ADS  Google Scholar 

  22. Liu F et al (2014) Cheap, gram-scale fabrication of BN nanosheets via substitution reaction of graphite powders and their use for mechanical reinforcement of polymers. Sci Rep 4:1–8

    Google Scholar 

  23. Moon OM, Kang B-C, Lee S-B, Boo J-H (2004) Temperature effect on structural properties of boron oxide thin films deposited by MOCVD method. Thin Solid Films 464–465:164–169

    Article  Google Scholar 

  24. Цагарейшвили OA, Л С et al (2015) Расчет удельной поверхности нанокристаллических порошков: гексагональный нитрид бора. Наноструктурное материаловедение

    Google Scholar 

  25. Becker R et al (2015) ‘Metallic’ boron nitride. Eur Chem Bull 4:8–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Sartinska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sartinska, L., Chkhartishvili, L. (2016). Effect of Concentrated Light on Boron Nitride Nanostructures Formation. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanophotonics, Surface Studies, and Applications. Springer Proceedings in Physics, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-319-30737-4_10

Download citation

Publish with us

Policies and ethics