Skip to main content

Quantifying Interactions Between Serum Proteins and Gold Nanoparticles

  • Chapter
  • First Online:
Quantifying Interactions of Biomolecules with Inorganic Surfaces

Part of the book series: Springer Theses ((Springer Theses))

  • 316 Accesses

Abstract

Understanding the interactions of serum proteins to surfaces are of paramount importance to the domain of nano-drug delivery systems. At the nano-bio interface, human plasma differentially interacts with engineered nanomaterials through the creation of protein coronas, which in turn become primary determinants of both the pharmacokinetics and pharmacodynamics of the circulating nanoparticles. Here, for the first time, the specific binding kinetics of the four major corona forming proteins (human serum albumin, fibrinogen, ApoA1, and polyclonal IgG) are determined for gold nanoparticles (AuNPs). Using a multiplexed surface plasmonic assay, highly reproducible measurements of on rate (kon), off rate (koff), and dissociation constant (KD), in addition to relative amounts of protein binding, were obtained. Dramatic differences in kon for individual components were shown as primary determinants of protein affinities, with kon ranging over nearly two orders of magnitude for the proteins studied, while koff remained within a factor of two for the set. The effect of polyethylene glycol (PEG) modification on plasma component binding was also studied and the effect of PEG length on human serum interaction was characterized through systematic screening of PEG molecular weight (2–30 K). The effect of nanoparticle modification on particle targeting was also characterized through study of a hybrid AuNP system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brewer, S.H., et al.: Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21, 9303–9307 (2005)

    Article  Google Scholar 

  2. Brown, D.M., et al.: Interaction between nanoparticles and cytokine proteins: impact on protein and particle functionality. Nanotechnology 21, 215104 (2010)

    Article  ADS  Google Scholar 

  3. Bajaj, A., et al.: Stability, toxicity and differential cellular uptake of protein passivated-Fe3O4 nanoparticles. J. Mater. Chem. 19, 6328–6331 (2009)

    Article  Google Scholar 

  4. Boraschi, D., Costantino, L., Italiani, P.: Interaction of nanoparticles with immunocompetent cells: nanosafety considerations. Nanomedicine 7, 121–131 (2011)

    Article  Google Scholar 

  5. Cedervall, T.: Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 104, 2050–2055 (2007)

    Article  ADS  Google Scholar 

  6. Fadeel, B., Garcia-Bennett, A.E.: Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev. 62, 362–374 (2010)

    Article  Google Scholar 

  7. Casals, E., et al.: Time evolution of the nanoparticle protein corona. ACS Nano 4, 3623–3632 (2010)

    Article  Google Scholar 

  8. Dell’Orco, D., et al.: Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS ONE 5, e10949 (2010)

    Article  ADS  Google Scholar 

  9. Gasser, M.: The adsorption of biomolecules to multi-walled carbon nanotubes is influenced by both pulmonary surfactant lipids and surface chemistry. J. Nanobiotechnol. 8, 31 (2010)

    Article  Google Scholar 

  10. Cifuentes-Rius, A., et al.: Optimizing the properties of the protein corona surrounding nanoparticles for tuning payload release. ACS Nano 7(11), 10066–10074 (2013)

    Article  Google Scholar 

  11. Deng, Z.J.: Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20, 455101 (2009)

    Article  ADS  Google Scholar 

  12. Kah, J.C.Y., et al.: Protein coronas on gold nanorods passivated with amphiphilic ligands affect cytotoxicity and cellular response to penicillin/streptomycin. ACS Nano 8(5), 4608–4620 (2014)

    Article  Google Scholar 

  13. Georgieva, J.V.: Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood-brain barrier endothelial cells in vitro. Mol. Ther. 19, 318–325 (2011)

    Article  Google Scholar 

  14. Ghosh, P.: Intracellular delivery of a membrane-impermeable enzyme in active form using functionalized gold nanoparticles. J. Am. Chem. Soc. 132, 2642–2645 (2010)

    Article  Google Scholar 

  15. Iversen, T.G., Skotland, T., Sandvig, K.: Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6, 176–185 (2011)

    Article  Google Scholar 

  16. Docter, D., et al.: Quantitative profiling of the protein coronas that form around nanoparticles. Nat. Protocols 9(9), 2030–2044 (2014)

    Article  Google Scholar 

  17. Mahmoudi, M., et al.: Temperature: the “ignored” factor at the nanobio interface. ACS Nano 7(8), 6555–6562 (2013)

    Article  Google Scholar 

  18. Jedlovszky-Hajdú, A., et al.: Surface coatings shape the protein corona of SPIONs with relevance to their application in vivo. Langmuir 28(42), 14983–14991 (2012)

    Article  Google Scholar 

  19. Lesniak, A., et al.: Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6(7), 5845–5857 (2012)

    Article  Google Scholar 

  20. Tenzer, S., et al.: nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5(9), 7155–7167 (2011)

    Article  Google Scholar 

  21. Monopoli, M.P., et al.: Physical—chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 133(8), 2525–2534 (2011)

    Article  Google Scholar 

  22. Walczyk, D., et al.: What the cell “sees” in bionanoscience. J. Am. Chem. Soc. 132(16), 5761–5768 (2010)

    Article  Google Scholar 

  23. Cedervall, T., et al.: Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. 104(7), 2050–2055 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  24. Liedl, T., et al.: Fluorescent nanocrystals as colloidal probes in complex fluids measured by fluorescence correlation spectroscopy. Small 1(10), 997–1003 (2005)

    Article  Google Scholar 

  25. Nienhaus, G.U., Maffre, P., Nienhaus, K.: Chapter four—studying the protein corona on nanoparticles by fcs, in methods in enzymology. In: Sergey, Y.T. (ed.) pp. 115–137. Academic Press, Cambridge (2013)

    Google Scholar 

  26. Zhang, F., et al.: Polymer-coated nanoparticles: a universal tool for biolabelling experiments. Small 7(22), 3113–3127 (2011)

    Article  Google Scholar 

  27. Cho, E.J., et al.: Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol. Pharm. 10(6), 2093–2110 (2013)

    Article  Google Scholar 

  28. Canovi, M., et al.: Applications of surface plasmon resonance (SPR) for the characterization of nanoparticles developed for biomedical purposes. Sensors (Basel, Switzerland) 12(12), 16420–16432 (2012)

    Google Scholar 

  29. Aggarwal, P., et al.: Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 61(6), 428–437 (2009)

    Article  Google Scholar 

  30. Karmali, P.P., Simberg, D.: Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin. Drug Deliv. 8(3), 343–357 (2011)

    Article  Google Scholar 

  31. Göppert, T., Müller, R.: Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int. J. Pharm. 302(1), 172–186 (2005)

    Article  Google Scholar 

  32. Tsai, D.-H., et al.: Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. Langmuir 27(6), 2464–2477 (2011)

    Article  Google Scholar 

  33. Mahmoudi, M., et al.: Variation of protein corona composition of gold nanoparticles following plasmonic heating. Nano Lett. 14(1), 6–12 (2013)

    Article  ADS  Google Scholar 

  34. Núñez, S., Venhorst, J., Kruse, C.G.: Target–drug interactions: first principles and their application to drug discovery. Drug Discovery Today 17(1), 10–22 (2012)

    Article  Google Scholar 

  35. Urbinati, C., et al.: αvβ3-integrin-dependent activation of focal adhesion kinase mediates NF-κB activation and motogenic activity by HIV-1 Tat in endothelial cells. J. Cell Sci. 118(17), 3949–3958 (2005)

    Article  Google Scholar 

  36. Chu, R., Reczek, D., Brondyk, W.: Capture-stabilize approach for membrane protein SPR assays. Sci Reports 4 (2014)

    Google Scholar 

  37. Otsuka, H., Nagasaki, Y., Kataoka, K.: PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Deliv. Rev. 55, 403–419 (2003)

    Article  Google Scholar 

  38. Kim, H.R.: Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE, CE and protein lab-on-chip system. Electrophoresis 28, 2252–2261 (2007)

    Article  Google Scholar 

  39. Hatakeyama, H., Akita, H., Harashima, H.: The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol. Pharm. Bull. 36(6), 892–899 (2013)

    Article  Google Scholar 

  40. Jeon, S.I., et al.: Protein—surface interactions in the presence of polyethylene oxide: I. Simplified theory. J. Colloid Interface Sci. 142(1), 149–158 (1991)

    Article  MathSciNet  Google Scholar 

  41. Kah, J.C.Y., et al.: Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study. J. Drug Target. 17(3), 181–193 (2009)

    Article  Google Scholar 

  42. McPherson, T., et al.: Prevention of protein adsorption by tethered poly(ethylene oxide) layers: experiments and single-chain mean-field analysis. Langmuir 14(1), 176–186 (1998)

    Article  Google Scholar 

  43. Gref, R., et al.: ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf., B 18(3–4), 301–313 (2000)

    Article  Google Scholar 

  44. Pozzi, D., et al.: Effect of polyethyleneglycol (PEG) chain length on the bio-nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale 6(5), 2782–2792 (2014)

    Article  ADS  Google Scholar 

  45. Frens, G.: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241, 20–22 (1972)

    ADS  Google Scholar 

  46. Nahshol, O., et al.: Parallel kinetic analysis and affinity determination of hundreds of monoclonal antibodies using the ProteOn XPR36. Anal. Biochem. 383(1), 52–60 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patra, A. (2017). Quantifying Interactions Between Serum Proteins and Gold Nanoparticles. In: Quantifying Interactions of Biomolecules with Inorganic Surfaces. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-30728-2_5

Download citation

Publish with us

Policies and ethics