Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 270 Accesses

Abstract

This chapter is meant to serve as a brief description of the aims and contents of the research work which produced this thesis. We will introduce some of the problems that we have sought to tackle and how this work is going to help researchers in a variety of fields.

“When you can measure what you are speaking about,

and express it in numbers, you know something about it”.

—Lord Kelvin, Electrical Units of Measurement, Vol 1, 1883-05-03.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mittal, K.L.: Advances in Contact Angle, Wettability and Adhesion. Wiley (2013)

    Google Scholar 

  2. Das, S.C., et al.: Determination of the polar and total surface energy distributions of particulates by inverse gas chromatography. Langmuir 27(2), 521–523 (2011)

    Article  Google Scholar 

  3. Azimi, G., et al.: Hydrophobicity of rare-earth oxide ceramics. Nat. Mater. 12(4), 315–320 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  4. Giovambattista, N., Debenedetti, P.G., Rossky, P.J.: Effect of surface polarity on water contact angle and interfacial hydration structure. J. Phys. Chem. B 111(32), 9581–9587 (2007)

    Article  Google Scholar 

  5. Giovambattista, N., Debenedetti, P.G., Rossky, P.J.: Enhanced surface hydrophobicity by coupling of surface polarity and topography. Proc. Natl. Acad. Sci. 106(36), 15181–15185 (2009)

    Article  ADS  Google Scholar 

  6. Hu, C., et al.: Analytical strategies in lipidomics and applications in disease biomarker discovery. J. Chromatogr. B 877(26), 2836–2846 (2009)

    Article  Google Scholar 

  7. Quehenberger, O., et al.: Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 51(11), 3299–3305 (2010)

    Article  Google Scholar 

  8. Bruce, S.J., et al.: Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Anal. Chem. 81(9), 3285–3296 (2009)

    Article  Google Scholar 

  9. Moco, S., et al.: Metabolomics technologies and metabolite identification. TrAC Trends Anal. Chem. 26(9), 855–866 (2007)

    Article  Google Scholar 

  10. Teahan, O., et al.: Impact of analytical bias in metabonomic studies of human blood serum and plasma. Anal. Chem. 78(13), 4307–4318 (2006)

    Article  Google Scholar 

  11. Gerdes, J.C. et al.: Kit Comprising Solid Phase Matrix Made of Aluminum Oxide, Titanium Oxide (Ti2O3) and/or Modified Zirconium Dioxide (ZrO2) for Identifying and Extracting Viral Nucleotide Sequences. Google Patents (2006)

    Google Scholar 

  12. Wei, W., et al.: Elimination of the interference from nitrate ions on oxalic acid in RP-HPLC by solid-phase extraction with nanosized hydroxyapatite. J. Liq. Chromatogr. Relat. Technol. 32(1), 106–124 (2008)

    Article  Google Scholar 

  13. Monopoli, M.P., et al.: Physical—chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 133(8), 2525–2534 (2011)

    Article  Google Scholar 

  14. Walczyk, D., et al.: What the cell “sees” in bionanoscience. J. Am. Chem. Soc. 132(16), 5761–5768 (2010)

    Article  Google Scholar 

  15. Lynch, I., Dawson, K.A.: Protein-nanoparticle interactions. Nano Today 3, 40–47 (2008)

    Article  Google Scholar 

  16. Salvati, A.: Transferrin-Functionalized Nanoparticles Lose Their Targeting Capabilities When a Biomolecule Corona Absorbs on the Surface. Nature Nanotech

    Google Scholar 

  17. Bajaj, A., et al.: Stability, toxicity and differential cellular uptake of protein passivated-Fe3O4 nanoparticles. J. Mater. Chem. 19, 6328–6331 (2009)

    Article  Google Scholar 

  18. Boraschi, D., Costantino, L., Italiani, P.: Interaction of nanoparticles with immunocompetent cells: nanosafety considerations. Nanomedicine 7, 121–131 (2011)

    Article  Google Scholar 

  19. Brown, D.M., et al.: Interaction between nanoparticles and cytokine proteins: impact on protein and particle functionality. Nanotechnology 21, 215104 (2010)

    Article  ADS  Google Scholar 

  20. Fadeel, B., Garcia-Bennett, A.E.: Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev. 62, 362–374 (2010)

    Article  Google Scholar 

  21. Ang, J.C., et al.: Protein trapping of silica nanoparticles. Soft Matter 6, 383–390 (2010)

    Article  ADS  Google Scholar 

  22. Brewer, S.H., et al.: Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21, 9303–9307 (2005)

    Article  Google Scholar 

  23. Dobrovolskaia, M.A.: Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomed. Nanotech. Biol. Med. 5, 106–117 (2009)

    Article  Google Scholar 

  24. Gagner, J.E., et al.: Effect of gold nanoparticle morphology on adsorbed protein structure and function. Biomaterials 32, 7241–7252 (2011)

    Article  Google Scholar 

  25. Schleh, C.: Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 6, 36–46 (2012)

    Article  Google Scholar 

  26. Gasser, M.: The adsorption of biomolecules to multi-walled carbon nanotubes is influenced by both pulmonary surfactant lipids and surface chemistry. J. Nanobiotechnol. 8, 31 (2010)

    Article  Google Scholar 

  27. Ge, C.: Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl. Acad. Sci. USA 108, 16968–16973 (2011)

    Article  ADS  Google Scholar 

  28. Docter, D., et al.: Quantitative profiling of the protein coronas that form around nanoparticles. Nat. Protocols 9(9), 2030–2044 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patra, A. (2017). Introduction. In: Quantifying Interactions of Biomolecules with Inorganic Surfaces. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-30728-2_1

Download citation

Publish with us

Policies and ethics