Skip to main content

Cytochrome P450-Like Biomimetic Oxidation Catalysts Based on Mn Porphyrins as Redox Modulators

  • Chapter
  • First Online:
Book cover Redox-Active Therapeutics

Abstract

In this chapter, we put forward an emerging concept on which the therapeutic action of some Mn porphyrins (MnPs) used in vivo may not be restricted to an SOD-type antioxidant catalytic role per se, but involve P450-type oxidation catalysis. ROS/RNS-type oxidants, such as hydrogen peroxide, hydroperoxides, and hypochlorite, are all classic oxygen donors in the chemistry literature of metalloporphyrin-based systems, mostly unavailable in the Pubmed database. Whereas the association of MnPs to a pro-oxidant therapeutic role is rather recent, MnPs have been explored as biomimetic oxidant catalysts for more than three decades in the fields of chemistry and catalysis. Merging the biological new discoveries and the typical oxidation chemistry findings would bring a breath of fresh air to both chemistry and biology with very positive prospects to the medicinal development of MnP-based therapeutics. The chapter includes, thus, a brief description of the general mechanism of the cytochromes P450 and related heme-containing enzymes, such as peroxidases (e.g., horseradish peroxidase) followed by the presentation of selected aspects of the 30+ years of biomimetic chemistry of MnPs as P450 models. It is not the goal of this chapter to provide a full account on the MnP-based biomimetic oxidation systems, but highlight some of the main features of P450-type MnP reactions that may become relevant on interpreting some of the biological results on the use of MnPs as redox-active therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AH:

A generic 1-electron donor (AH → A + H+ + 1e)

AO:

A generic oxygen donor such as PhIO, ClO, and H2O2 etc.

FeP:

Iron porphyrin

FeTPP+:

Fe(III) meso-tetraphenylporphyrin

HRP:

Horseradish peroxidase

LOOH:

Lipid hydroperoxide or an alkyl hydroperoxide

MnP:

Manganese porphyrin

MnTBAP3− :

Mn(III) meso-tetrakis(benzoic acid)porphyrin or Mn(III) meso-tetrakis(carboxyphenyl)porphyrin

MnTE-2-PyP5+ :

Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin

MnTM-2-PyP5+ :

Mn(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin

MnTM-3-PyP5+ :

Mn(III) meso-tetrakis(N-methylpyridinium-3-yl)porphyrin

MnTM-4-PyP5+ :

Mn(III) meso-tetrakis(N-methylpyridinium-4-yl)porphyrin

MnTnBuOE-2-PyP5+ :

Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin

MnTnHex-2-PyP5+ :

Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin

MnTPP+:

Mn(III) meso-tetraphenylporphyrin

NADP+ :

Nicotinamide adenine dinucleotide phosphate

NADPH:

Reduced form of nicotinamide adenine dinucleotide phosphate

P450:

Cytochrome P450

PhIO:

Iodosylbenzene

RH:

A generic organic substrate usually an alkane

SOD:

Superoxide dismutase

References

  1. Milgrom LR. The colours of life: an introduction to the chemistry of porphyrins and related compounds. Oxford: Oxford University Press; 1997.

    Google Scholar 

  2. Lippard SJ, Berg JM. Principles of bioinorganic chemistry. Mill Valley: University Science; 1994.

    Google Scholar 

  3. da Silva JJRF, Williams RJP. The biological chemistry of the elements: the inorganic chemistry of life. New York: Oxford University Press; 2001. p. 343–69.

    Google Scholar 

  4. Kumar S, Bandyopadhyay U. Free heme toxicity and its detoxification systems in human. Toxicol Lett. 2005;157:175–88.

    Article  CAS  PubMed  Google Scholar 

  5. Aich A, Freundlich M, Vekilov PG. The free heme concentration in healthy human erythrocytes. Blood Cells Mol Dis. 2015;55:402–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jones RD, Summerville DA, Basolo F. Synthetic oxygen carriers related to biological systems. Chem Rev. 1979;79:139–79.

    Article  CAS  Google Scholar 

  7. James BR. Interaction of dioxygen with metalloporphyrins. In: Dolphin D, editor. The porphyrins, vol. V. New York: Academic Press; 1977. p. 205–302.

    Google Scholar 

  8. Traylor TG. Synthetic model compounds for hemoproteins. Acc Chem Res. 1981;14:102–9.

    Article  CAS  Google Scholar 

  9. de Montellano PRO. Catalytic sites of hemoprotein peroxidases. Annu Rev Pharmacol Toxicol. 1992;32:89–107.

    Article  Google Scholar 

  10. Collman JP, Boulatov R, Sunderland CJ, Fu L. Functional analogues of cytochrome c oxidase, myoglobin, and hemoglobin. Chem Rev. 2004;104:561–88.

    Article  CAS  PubMed  Google Scholar 

  11. Mansuy D, Battioni P. Biochemistry and binding: activation of small molecules. In: Kadish KM, Smith KM, Guilard R, editors. The porphyrin handbook, vol. 4. New York: Academic Press; 2000. p. 1–15.

    Google Scholar 

  12. Hrycay EG, Bandiera SM. The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450. Archiv Biochem Biophys. 2012;522:71–89.

    Article  CAS  Google Scholar 

  13. Meunier B, Visser SP, Shaik S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem Rev. 2004;104:3947–80.

    Article  CAS  PubMed  Google Scholar 

  14. Sheldon RA. Oxidation catalysis by metalloporphyrins: a historical perspective. In: Sheldon RA, editor. Metalloporphyrins in catalytic oxidations. New York: Marcel Dekker; 1994. p. 5–27.

    Google Scholar 

  15. Breslow R. Centenary lecture. Biomimetic chemistry. Chem Soc Rev. 1972;1:553–80.

    Article  CAS  Google Scholar 

  16. Breslow R. Preface. In: Breslow R, editor. Artificial enzymes. Weinheim: Wiley-VCH; 2014. p. 9–10.

    Google Scholar 

  17. Ezhova MB, James BR. Catalytic oxidations using ruthenium porphyrins. In: Simándi LI, editor. Advances in catalytic activation of dioxygen by metal complexes. Dordrecht: Kluwer Academic; 2003. p. 1–77.

    Chapter  Google Scholar 

  18. Rebouças JS, Patrick BO, James BR. Thiol, disulfide, and trisulfide complexes of Ru porphyrins: potential models for Iron-Sulfur bonds in heme-proteins. J Am Chem Soc. 2012;134:3555–70.

    Article  PubMed  CAS  Google Scholar 

  19. Rebouças JS, James BR. Molecular recognition using Ruthenium(II) porphyrin thiol complexes as probes. Inorg Chem. 2013;52:1084–98.

    Article  PubMed  CAS  Google Scholar 

  20. Meunier B. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem Rev. 1992;92:1411–56.

    Article  CAS  Google Scholar 

  21. Groves JT, Shalyaev K, Lee J. Oxometalloporphyrins in oxidative catalysis. In: Kadish KM, Smith KM, Guilard R, editors. The porphyrin handbook, vol. 4. San Diego: Academic Press; 2000. p. 17–40.

    Google Scholar 

  22. Batinić-Haberle I, Rebouças JS, Spasojević I. Superoxide dismutase mimics: chemistry, pharmacology and therapeutic potential. Antioxid Redox Signal. 2010;13:877–918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Batinić-Haberle I, Rebouças JS, Benov B, Spasojević I. Chemistry, biology and medical effects of water-soluble metalloporphyrins. In: Kadish KM, Smith KM, Guilard R, editors. Handbook of porphyrin science, vol. 11. New York: World Scientific; 2011. p. 291–394.

    Google Scholar 

  24. Dolphin D, Traylor TG, Xie LY. Polyhaloporphyrins: unusual ligands for metals and metal-catalyzed oxidations. Acc Chem Res. 1997;30:251–9.

    Article  CAS  Google Scholar 

  25. Collman JP, Gagne RR, Halbert TR, Marchon JC, Reed CA. Reversible oxygen adduct formation in ferrous complexes derived from a picket fence porphyrin. Model for oxymyoglobin. J Am Chem Soc. 1973;95:7868–70.

    Article  CAS  PubMed  Google Scholar 

  26. Almog J, Baldwin JE, Huff J. Reversible oxygenation and autoxidation of a capped porphyrin iron(II) complex. J Am Chem Soc. 1975;97:227–8.

    Article  CAS  Google Scholar 

  27. Momenteau M, Loock B, Mispelter J, Bisagni E. “Basket handle” porphyrins and their ferrous complexes as stables oxygen carriers. Nouv J Chim. 1979;3:77–9.

    CAS  Google Scholar 

  28. Jones RD, Summerville DA, Basolo F. Manganese(II) porphyrin oxygen carriers. Equilibrium constants for the reaction of dioxygen with para-substituted meso-tetraphenylporphinatomanganese(II) complexes. J Am Chem Soc. 1978;100:4416–24.

    Article  CAS  Google Scholar 

  29. Tsuchida E, Sou K, Nakagawa A, Sakai H, Komatsu T, Kobayashi K. Artificial oxygen carriers, hemoglobin vesicles and albumin-hemes, based on bioconjugate chemistry. Bioconjug Chem. 2009;20:1419–40.

    Article  CAS  PubMed  Google Scholar 

  30. Alayash AI. Blood substitutes: why haven’t we been more successful? Trends Biotechnol. 2014;32:177–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Riess JG. Oxygen carriers (“blood substitutes”)—raison d’etre, chemistry, and some physiology. Chem Rev. 2001;101:2797–920.

    Article  CAS  PubMed  Google Scholar 

  32. Cheng L, Richter-Addo GB. Binding and activation of nitric oxide by metalloporphyrins and heme. In: Kadish KM, Smith KM, Guilard R, editors. The porphyrin handbook, vol. 4. New York: Academic Press; 2000. p. 219–91.

    Google Scholar 

  33. Koshland Jr DE. The molecule of the year. Science. 1992;258:1861.

    Article  PubMed  Google Scholar 

  34. Szabó C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov. 2007;6:662–80.

    Article  PubMed  CAS  Google Scholar 

  35. Groves JT, Nemo TE, Myers RS. Hydroxylation and epoxidation catalyzed by iron-porphine complexes. Oxygen transfer from iodosylbenzene. J Am Chem Soc. 1979;101:1032–3.

    Article  CAS  Google Scholar 

  36. de Montellano PRO. Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem Rev. 2010;110:932–48.

    Article  CAS  Google Scholar 

  37. Mansuy D. A brief history of the contribution of metalloporphyrin models to cytochrome P450 chemistry and oxidation catalysis. C R Chimie. 2007;10:392–413.

    Article  CAS  Google Scholar 

  38. Wijesekera TP, Dolphin D. Synthetic aspects of porphyrin and metalloporphyrin chemistry. In: Sheldon RA, editor. Metalloporphyrin in catalytic oxidations. New York: Marcel Dekker; 1994. p. 193–239.

    Google Scholar 

  39. Suslick KS. Shape-selective oxidations by metalloporphyrins. In: Kadish KM, Smith KM, Guilard R, editors. The porphyrin handbook, vol. 4. New York: Academic Press; 2000. p. 41–63.

    Google Scholar 

  40. Che CM, Lo VK, Zhou CY, Huang JS. Selective functionalisation of saturated C–H bonds with metalloporphyrin catalysts. Chem Soc Rev. 2011;40:1950–75.

    Article  CAS  PubMed  Google Scholar 

  41. Tovmasyan A, Maia CGC, Weitner T, Carballal S, Sampaio RS, Lieb D, Ghazaryan R, Ivanovic-Burmazovic I, Ferrer-Sueta G, Radi R, Rebouças JS, Spasojević I, Benov L, Batinić-Haberle I. A comprehensive evaluation of catalase-like activity of different classes of redox-active therapeutics. Free Radic Biol Med. 2015;86:308–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Batinić-Haberle I, Tovmasyan A, Roberts ER, Vujaskovic Z, Leong KW, Spasojević I. SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal. 2014;20:2372–415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. DeFreitas-Silva G, Rebouças JS, Spasojević I, Benov L, Idemori YM, Batinić-Haberle I. SOD-like activity of Mn(II) β-octabromo-meso-tetrakis(N-methylpyridinium-3-yl)porphyrin equals that of the enzyme itself. Arch Biochem Biophys. 2008;477:105–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tovmasyan A, Weitner T, Sheng H, Lu M, Rajic Z, Warner DS, Spasojević I, Rebouças JS, Benov L, Batinić-Haberle I. Differential coordination demands in Fe versus Mn water-soluble cationic metalloporphyrins translate into remarkably different aqueous redox chemistry and biology. Inorg Chem. 2013;52:5677–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tovmasyan A, Rebouças JS, Benov L. Simple biological systems for assessing the activity of superoxide dismutase mimics. Antioxid Redox Signal. 2014;20:2416–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pasternack RF, Halliwell B. Superoxide dismutase activities of an iron porphyrin and other iron complexes. J Am Chem Soc. 1979;101:1026–31.

    Article  CAS  Google Scholar 

  47. Faraggi M, Peretz P, Weinraub D. Chemical properties of water-soluble porphyrins. 4. The reaction of a ‘picket-fence-like’ iron (III) complex with the superoxide oxygen couple. Int J Radiat Biol Relat Stud Phys Chem Med. 1986;49:951–68.

    Article  CAS  PubMed  Google Scholar 

  48. Weinraub D, Peretz P, Faraggi M. Chemical properties of water-soluble porphyrins. 1. Equilibriums between some ligands and iron(III) tetrakis(4-N-methylpyridyl)porphyrin. J Phys Chem. 1982;86:1839–42.

    Article  CAS  Google Scholar 

  49. Ilan Y, Rabani J, Fridovich I, Pasternack RF. Superoxide dismuting activity of an iron porphyrin. Inorg Nucl Chem Lett. 1981;17:93–6.

    Article  CAS  Google Scholar 

  50. Pasternack RF, Banth A, Pasternack JM, Johnson CS. Catalysis of the disproportionation of superoxide by metalloporphyrins. III. J Inorg Biochem. 1981;15:261–7.

    Article  CAS  PubMed  Google Scholar 

  51. Peretz P, Solomon D, Weinraub D, Faraggi M. Chemical properties of water-soluble porphyrins 3. The reaction of superoxide radicals with some metalloporphyrins. Int J Radiat Biol Relat Stud Phys Chem Med. 1982;42:449–56.

    Article  CAS  PubMed  Google Scholar 

  52. Weinraub D, Levy P, Faraggi M. Chemical properties of water-soluble porphyrins. 5. Reactions of some manganese (III) porphyrins with the superoxide and other reducing radicals. Int J Radiat Biol Relat Stud Phys Chem Med. 1986;50:649–58.

    Article  CAS  PubMed  Google Scholar 

  53. Batinić-Haberle I, Benov L, Spasojević I, Fridovich I. The ortho effect makes manganese(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin a powerful and potentially useful superoxide dismutase mimic. J Biol Chem. 1998;273:24521–8.

    Article  PubMed  Google Scholar 

  54. Batinić-Haberle I, Spasojević I, Hambright P, Benov L, Crumbliss AL, Fridovich I. Relationship among redox potentials, proton dissociation constants of pyrrolic nitrogens, and in vivo and in vitro superoxide dismutating activities of Manganese(III) and Iron(III) water-soluble porphyrins. Inorg Chem. 1999;38:4011–22.

    Article  CAS  Google Scholar 

  55. Batinić-Haberle I, Liochev SI, Spasojević I, Fridovich I. A potent superoxide dismutase mimic: manganese beta-octabromo-meso-tetrakis-(N-methylpyridinium-4-yl)porphyrin. Arch Biochem Biophys. 1997;343:225–33.

    Article  PubMed  Google Scholar 

  56. Batinić-Haberle I, Spasojević I, Stevens RD, Hambright P, Fridovich I. Manganese(III) meso-tetrakis(ortho-N-alkylpyridyl)porphyrins. Synthesis, characterization, and catalysis of O2 ∙− dismutation. J Chem Soc Dalton Trans. 2002:2689–96.

    Google Scholar 

  57. Batinić-Haberle I, Spasojević I, Stevens RD, Hambright P, Neta P, Okado-Matsumoto A, Fridovich I. New class of potent catalysts of O2-dismutation. Mn(III) ortho-methoxyethylpyridyl- and di-ortho-methoxyethylimidazolylporphyrins. Dalton Trans. 2004:1696–702.

    Google Scholar 

  58. Spasojević I, Batinić-Haberle I, Rebouças JS, Idemori YM, Fridovich I. Electrostatic contribution in the catalysis of O2 •– dismutation by superoxide dismutase mimics. MnIIITE-2-PyP5+ versus MnIIIBr8T-2-PyP+. J Biol Chem. 2003;278:6831–7.

    Article  PubMed  Google Scholar 

  59. Rebouças JS, Spasojević I, Tjahjono DH, Richaud A, Méndez F, Benov L, Batinić-Haberle I. Redox modulation of oxidative stress by Mn porphyrin-based therapeutics: the effect of charge distribution. Dalton Trans. 2008:1233–42.

    Google Scholar 

  60. Rebouças JS, DeFreitas-Silva G, Spasojević I, Idemori YM, Benov L, Batinić-Haberle I. Impact of electrostatics in redox modulation of oxidative stress by Mn porphyrins: protection of SOD-deficient Escherichia coli via alternative mechanism where Mn porphyrin acts as a Mn carrier. Free Radic Biol Med. 2008;45:201–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Batinić-Haberle I, Tovmasyan A, Spasojević I. The complex mechanistic aspects of redox-active compounds, commonly regarded as SOD mimics. BioInorg React Mech. 2013;9:35–58.

    Google Scholar 

  62. Batinić-Haberle I, Rajic Z, Tovmasyan A, Rebouças JS, Ye X, Leong KW, Dewhirst MW, Vujaskovic Z, Benov L, Spasojević I. Diverse functions of cationic Mn(III) N-substituted pyridyl porphyrins, recognized as SOD mimics. Free Radic Biol Med. 2011;51:1035–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Tovmasyan A, Sheng H, Weitner T, Arulpragasam A, Lu M, Warner DS, Vujaskovic Z, Spasojević I, Batinić-Haberle I. Design, mechanism of action, bioavailability and therapeutic effects of Mn porphyrin-based redox modulators. Med Princ Pract. 2013;22:103–30.

    Article  PubMed  Google Scholar 

  64. Sheng H, Spasojević I, Warner DS, Batinić-Haberle I. Mouse spinal cord compression injury is ameliorated by intrathecal cationic manganese(III) porphyrin catalytic antioxidant therapy. Neurosci Lett. 2004;366:220–5.

    Article  CAS  PubMed  Google Scholar 

  65. Mackensen GB, Patel M, Sheng H, Calvi CL, Batinić-Haberle I, Day BJ, Liang LP, Fridovich I, Crapo JD, Pearlstein RD, Warner DS. Neuroprotection from delayed post ischemic administration of a metalloporphyrin catalytic antioxidant. J Neurosci. 2001;21:4582–92.

    CAS  PubMed  Google Scholar 

  66. Feiters MC, Rowan AE, Nolte RJM. From simple to supramolecular cytochrome P450 mimics. Chem Soc Rev. 2000;29:375–84.

    Article  CAS  Google Scholar 

  67. Ellis PE, Lyons JE. Selective air oxidation of light alkanes catalyzed by activated metalloporphyrins—the search for a suprabiotic system. Coord Chem Rev. 1990;105:181–93.

    Article  CAS  Google Scholar 

  68. Grinstaff MW, Hill MG, Labinger JA, Gray HB. Mechanism of catalytic oxygenation of alkanes by halogenated iron porphyrins. Science. 1994;264:1311–3.

    Article  CAS  PubMed  Google Scholar 

  69. Holm RH. Metal-centered oxygen atom transfer reactions. Chem Rev. 1987;87:1401–49.

    Article  CAS  Google Scholar 

  70. Baylon JL, Lenov IL, Sligar SG, Tajkhorshid E. Characterizing the membrane-bound state of cytochrome P450 3A4: structure, depth of insertion, and orientation. J Am Chem Soc. 2013;135:8542–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pochapsky TC, Kazanis S, Dang M. Conformational plasticity and structure/function relationships in cytochromes P450. Antioxid Redox Signal. 2010;13:1273–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shaik S, Kumar D, Visser SP, Altun A, Thiel W. Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. Chem Rev. 2005;105:2279–328.

    Article  CAS  PubMed  Google Scholar 

  73. Nam W. High-valent iron(IV)—oxo complexes of heme and non-heme ligands in oxygenation reactions. Acc Chem Res. 2007;40:522–31.

    Article  CAS  PubMed  Google Scholar 

  74. Rittle J, Green MT. Cytochrome P450 compound I: capture, characterization, and C–H bond activation kinetics. Science. 2010;330:933–7.

    Article  CAS  PubMed  Google Scholar 

  75. Jung C. The mystery of cytochrome P450 Compound I: a mini-review dedicated to Klaus Ruckpaul. Biochim Biophys Acta. 1814;2011:46–57.

    Google Scholar 

  76. Krest CM, Onderko EL, Yosca TH, Calixto JC, Karp RF, Livada J, Rittle J, Green MT. Reactive intermediates in cytochrome p450 catalysis. J Biol Chem. 2013;288:17074–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Denisov IG, Mak PJ, Makris TM, Sligar SG, Kincaid JR. Resonance Raman characterization of the peroxo and hydroperoxo intermediates in cytochrome P450. J Phys Chem A. 2008;112:13172–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cojocaru V, Balali-Mood K, Sansom MSP, Wade RC. Structure and dynamics of the membrane-bound cytochrome P450 2C9. PLoS Comput Biol. 2011;7, e1002152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Das A, Grinkova YV, Sligar SG. Redox potential control by drug binding to cytochrome P450 3A4. J Am Chem Soc. 2007;129:13778–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Lewis DF, Hlavica P. Interactions between redox partners in various cytochrome P450 systems: functional and structural aspects. Biochim Biophys Acta. 2000;1460:353–74.

    Article  CAS  PubMed  Google Scholar 

  81. Fisher MT, Sligar SG. Control of heme protein redox potential and reduction rate: linear free energy relation between potential and ferric spin state equilibrium. J Am Chem Soc. 1985;107:5018–9.

    Article  CAS  Google Scholar 

  82. Sligar SG. Coupling of spin, substrate, and redox equilibria in cytochrome P450. Biochemistry. 1976;15:5399–406.

    Article  CAS  PubMed  Google Scholar 

  83. Groves JT, McClusky GA. Aliphatic hydroxylation via oxygen rebound. Oxygen transfer catalyzed by iron. J Am Chem Soc. 1976;98:859–61.

    Article  CAS  Google Scholar 

  84. Groves JT, McClusky GA. Aliphatic hydroxylation by highly purified liver microsomal cytochrome P-450. Evidence for a carbon radical intermediate. Biochem Biophys Res Commun. 1978;81:154–60.

    Article  CAS  PubMed  Google Scholar 

  85. Veitch NC. Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry. 2004;65:249–59.

    Article  CAS  PubMed  Google Scholar 

  86. Kobayashi S, Nakano M, Kimura T, Schaap AP. On the mechanism of the peroxidase-catalyzed oxygen-transfer reaction. Biochemistry. 1987;26:5019–22.

    Article  CAS  PubMed  Google Scholar 

  87. Fujii H. Model complexes of heme peroxidases. In: Raven E, Dunford B, editors. Heme peroxidases. Cambridge: RSC Metallobiology; 2016. p. 183–217.

    Google Scholar 

  88. Nakagaki S, Ferreira GKB, Marcalb AL, Ciuffi KJ. Metalloporphyrins immobilized on silica and modified silica as catalysts in heterogeneous processes. Curr Org Synth. 2014;11:67–88.

    Article  CAS  Google Scholar 

  89. Hongjian L, Zhang XP. Catalytic C–H functionalization by metalloporphyrins: recent developments and future directions. Chem Soc Rev. 2011;40:1899–909.

    Article  Google Scholar 

  90. Gunter MJ, Turner P. Metalloporphyrins as models for the cytochromes p-450. Coord Chem Rev. 1991;108:115–61.

    Article  CAS  Google Scholar 

  91. Silva VS, Meireles AM, Martins DCS, Rebouças JS, DeFreitas-Silva G, Idemori YM. Effect of imidazole on biomimetic cyclohexane oxidation by first-, second-, and third-generation manganese porphyrins using PhIO and PhI(OAc)2 as oxidants. Appl Catal A-Gen. 2015;491:17–27.

    Article  CAS  Google Scholar 

  92. Iamamoto Y, Serra OA, Idemori YM. Iron(III) porphyrins atropisomers as catalysts for cyclohexane hydroxylations. A biomimetical system. J Inorg Biochem. 1994;54:55–66.

    Article  CAS  Google Scholar 

  93. Tabushi I. Reductive dioxygen activation by use of artificial P-450 systems. Coord Chem Rev. 1988;86:1–42.

    Article  CAS  Google Scholar 

  94. Mansuy D, Fontecave M, Bartoli JF. Mono-oxygenase-like dioxygen activation leading to alkane hydroxylation and olefin epoxidation by an Mn(porphyrin)-ascorbate biphasic system. J Chem Soc Chem Commun. 1983:253–4.

    Google Scholar 

  95. Groves JT, Neumann R. Enzymic regioselectivity in the hydroxylation of cholesterol catalyzed by a membrane-spanning metalloporphyrin. J Org Chem. 1988;53:3891–3.

    Article  CAS  Google Scholar 

  96. Groves JT, Neumann R. Regioselective oxidation catalysis in synthetic phospholipid vesicles. Membrane-spanning steroidal metalloporphyrins. J Am Chem Soc. 1989;111:2900–9.

    Article  CAS  Google Scholar 

  97. Spasojević I, Colvin OM, Warshany KR, Batinić-Haberle I. New approach to the activation of anti-cancer pro-drugs by metalloporphyrin-based cytochrome P450 mimics in all-aqueous biologically relevant system. J Inorg Biochem. 2006;100:1897–902.

    Article  PubMed  CAS  Google Scholar 

  98. Nam W, Choi HJ, Han HJ, Cho SH, Lee HJ, Han SY. Use of 2-methyl-1-phenylpropan-2-yl hydroperoxide (MPPH) as a mechanistic probe for the heterolytic versus homolytic O-O bond cleavage of tert-alkyl hydroperoxide by iron(III) porphyrin complex. Chem Commun. 1999;4:387–8.

    Article  Google Scholar 

  99. Groves JT, Kruper Jr WJ, Haushalter RC. Hydrocarbon oxidations with oxometalloporphinates. Isolation and reactions of a (porphinato)manganese(V) complex. J Am Chem Soc. 1980;102:6375–7.

    Article  CAS  Google Scholar 

  100. Hill CL, Schardt BC. Alkane activation and functionalization under mild conditions by a homogeneous manganese(III)porphyrin-iodosylbenzene oxidizing system. J Am Chem Soc. 1980;102:6374–5.

    Article  CAS  Google Scholar 

  101. Smegal JA, Hill CL. Hydrocarbon functionalization by the (iodosylbenzene)manganese(IV) porphyrin complexes from the (tetraphenylporphinato)manganese(III)-iodosylbenzene catalytic hydrocarbon oxidation system. Mechanism and reaction chemistry. J Am Chem Soc. 1983;105:3515–21.

    Article  CAS  Google Scholar 

  102. Suslick KS, van Deusen-Jeffries S. Shape selective biomimetic oxidation catalysis. In: Atwood JL, Davies JED, MacNicol DD, Vögtle F, Lehn J-M, editors. Comprehensive supramolecular chemistry, vol. 5. Oxford: Elsevier; 1996. p. 141–70.

    Google Scholar 

  103. Rebouças JS, Carvalho MEMD, Idemori YM. Perhalogenated 2-pyridylporphyrin complexes: synthesis, self-coordinating aggregation properties, and catalytic studies. J Porphyrins Phthalocyanines. 2002;6:50–7.

    Article  Google Scholar 

  104. Serra AC, Marçalo EC, Gonsalves AMd’AR. A view on the mechanism of metalloporphyrin degradation in hydrogen peroxide epoxidation reactions. J Mol Catal A-Chem. 2004;215:17–21.

    Article  CAS  Google Scholar 

  105. do Nascimento E, de F Silva G, Caetano FA, Fernandes MA, da Silva DC, de Carvalho ME, Pernaut JM, Rebouças JS, Idemori YM. Partially and fully beta-brominated Mn-porphyrins in P450 biomimetic systems: effects of the degree of bromination on electrochemical and catalytic properties. J Inorg Biochem. 2005;99:1193–204.

    Google Scholar 

  106. da Silva DC, DeFreitas-Silva G, do Nascimento E, Rebouças JS, Barbeira PJ, de Carvalho ME, Idemori YM. Spectral, electrochemical, and catalytic properties of a homologous series of manganese porphyrins as cytochrome P450 model: the effect of the degree of beta-bromination. J Inorg Biochem. 2008;102:1932–41.

    Google Scholar 

  107. Tovmasyan A, Sampaio RS, Boss MK, Bueno-Janice JC, Bader BH, Thomas M, Rebouças JS, Orr M, Chandler JD, Go YM, Jones DP, Venkatraman TN, Haberle S, Kyui N, Lascola CD, Dewhirst MW, Spasojević I, Benov L, Batinić-Haberle I. Anticancer therapeutic potential of Mn porphyrin/ascorbate system. Free Radic Biol Med. 2015;89:1231–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Johnstone RAW, Nunes MLPG, Pereira MM, Gonsalves AMd’AR, Serra AC. Improved syntheses of 5, 10, 15, 20-tetrakisaryl- and tetrakisalkylporphyrins. Heterocycles. 1996;43:1423–37.

    Article  CAS  Google Scholar 

  109. Lindsey JS, Schreiman IC, Hsu HC, Kearney PC, Marguerettaz AM. Rothemund and Adler-Longo reactions revisited: synthesis of tetraphenylporphyrins under equilibrium conditions. J Org Chem. 1987;52:827–36.

    Article  CAS  Google Scholar 

  110. Lindsey JS, Wagner RW. Investigation of the synthesis of ortho-substituted tetraphenylporphyrins. J Org Chem. 1989;54:828–36.

    Article  CAS  Google Scholar 

  111. Atkinson ST, Brady SP, James JP, Nolan KB. Synthetic haems as mimics for high valent intermediates in haemoprotein catalysed oxidations. Synthesis and oxidation of chloro-7,8,17,18-tetracyano-5,10,15,20-tetraphenylporphyrinatoiron(III), a haem which contains strongly electron-withdrawing groups in the β-pyrrole positions. Pure Appl Chem. 1995;67:1109–16.

    Article  CAS  Google Scholar 

  112. Borocci S, Marotti F, Mancini G, Monti D, Pastorini A. Selectivity in the oxidation of limonene by amphiphilized metalloporphyrins in micellar media. Langmuir. 2001;17:7198–203.

    Article  CAS  Google Scholar 

  113. Lohmann W, Karst U. Biomimetic modeling of oxidative drug metabolism: strategies, advantages and limitations. Anal Bioanal Chem. 2008;391:79–96.

    Article  CAS  PubMed  Google Scholar 

  114. Bernadou J, Meunier B. Biomimetic chemical catalysts in the oxidative activation of drugs. Adv Synth Catal. 2004;346:171–84.

    Article  CAS  Google Scholar 

  115. Masumoto H, Takeuchi K, Ohta S, Hirobe M. Application of chemical P450 model systems to studies on drug metabolism. I. Phencyclidine: a multi-functional model substrate. Chem Pharm Bull. 1989;37:1788–94.

    Article  CAS  PubMed  Google Scholar 

  116. Pautet F, Barret R, Daudon M. Optimization of biomimetic oxidation reactions achieved with the aid of an iodosylbenzene and meso-tetraphenylporphinatoiron (III): application to antergan. Pharm Acta Helv. 1988;63:140–4.

    CAS  PubMed  Google Scholar 

  117. Salmeen IT, Foxall-VanAken S, Ball JC. A preliminary study of an iron porphyrin-iodosylbenzene system for activation of mutagens in the Ames assay. Mutat Res Lett. 1988;207:111–5.

    Article  CAS  Google Scholar 

  118. Chauncey MA, Ninomiya SI. Metabolic studies with model cytochrome p-450 systems. Tetrahedron Lett. 1990;31:5901–4.

    Article  CAS  Google Scholar 

  119. Neves CMB, Simões MMQ, Santos ICMS, Domingues FMJ, Neves MGPMS, Paz FAA, Silva AMS, Cavaleiro JAS. Oxidation of caffeine with hydrogen peroxide catalyzed by metalloporphyrins. Tetrahedron Lett. 2011;52:2898–902.

    Article  CAS  Google Scholar 

  120. Schaab EH, Crotti AEM, Iamamoto Y, Kato MJ, Lotufo LVC, Lopes NP. Biomimetic oxidation of piperine and piplartine catalyzed by iron(III) and manganese(III) porphyrins. Biol Pharm Bull. 2010;33:912–6.

    Article  CAS  PubMed  Google Scholar 

  121. Breslow R, Zhang X, Huang Y. Selective catalytic hydroxylation of a steroid by an artificial cytochrome P-450 enzyme. J Am Chem Soc. 1997;119:4535–6.

    Article  CAS  Google Scholar 

  122. Fang Z, Breslow R. A thiolate ligand on a cytochrome P-450 mimic permits the use of simple environmentally benign oxidants for biomimetic steroid hydroxylation in water. Bioorg Med Chem Lett. 2005;15:5463–6.

    Article  CAS  PubMed  Google Scholar 

  123. Melo AJB, Iamamoto Y, Maestrin APJ, Smith JRL, Santos MD, Lopes NP, Bonato PS. Biomimetic oxidation of praziquantel catalysed by metalloporphyrins. J Mol Catal A-Chem. 2005;226:23–31.

    Article  CAS  Google Scholar 

  124. Hartmann J, Bartels P, Mau U, Witter M, Tümpling WV, Hofmann J, Nietzschmann E. Degradation of the drug diclofenac in water by sonolysis in presence of catalysts. Chemosphere. 2008;70:453–61.

    Article  CAS  PubMed  Google Scholar 

  125. Santos MD, Martins PR, Santos PA, Bortocan R, Iamamoto Y, Lopes NP. Oxidative metabolism of 5-o-caffeoylquinic acid (chlorogenic acid), a bioactive natural product, by metalloporphyrin and rat liver mitochondria. Eur J Pharm Sci. 2005;26:62–70.

    Article  PubMed  CAS  Google Scholar 

  126. Mac Leod TCO, Faria AL, Barros VP, Queiroz MEC, Assis MD. Primidone oxidation catalyzed by metalloporphyrins and Jacobsen catalyst. J Mol Catal A-Chem. 2008;296:54–60.

    Article  CAS  Google Scholar 

  127. Neves CMB, Simões MMQ, Domíngues MRM, Santos ICMS, Neves MGPMS, Paz FAA, Silva AMS, Cavaleiro JAS. Oxidation of diclofenac catalyzed by manganese porphyrins: synthesis of novel diclofenac derivatives. RSC Adv. 2012;2:7427–38.

    Article  CAS  Google Scholar 

  128. Simões MMQ, Neves CMB, Pires SMG, Neves MGPMS, Cavaleiro JAS. Mimicking P450 processes and the use of metalloporphyrins. Pure Appl Chem. 2013;85:1671–81.

    Article  CAS  Google Scholar 

  129. Faria AL, Mac Leod TCO, Assis MD. Carbamazepine oxidation catalyzed by iron and manganese porphyrins supported on aminofunctionalized matrices. Catal Today. 2008;133–135:863–9.

    Article  CAS  Google Scholar 

  130. CarvalhoDa-Silva D, Mac Leod TCO, Faria AL, Santos JS, Carvalho MEMD, Rebouças JS, Idemori YM, Assis MD. Carbamazepine oxidation catalyzed by manganese porphyrins: effects of the β-bromination of the macrocycle and the choice of oxidant. Appl Catal A-Gen. 2011;408:25–30.

    Article  CAS  Google Scholar 

  131. Song R, Sorokin A, Bernadou J, Meunier B. Metalloporphyrin-catalyzed oxidation of 2-methylnaphthalene to vitamin K3 and 6-methyl-1,4-naphthoquinone by potassium monopersulfate in aqueous solution. J Org Chem. 1997;62:673–8.

    Article  CAS  PubMed  Google Scholar 

  132. Waldmann D, König T, Schreier P. Iron(III)porphinate/H2O2-mediated conversion of all-(E)-retinol. Z Naturforsch B. 1995;50:589–94.

    Article  CAS  Google Scholar 

  133. Bloodsworth A, O’Donnell VB, Batinić-Haberle I, Chumley PH, Hurt JB, Day BJ, Crow JP, Freeman BA. Manganese-porphyrin reactions with lipids and lipoproteins. Free Radic Biol Med. 2000;28:1017–29.

    Article  CAS  PubMed  Google Scholar 

  134. Ferrer-Sueta G, Batinić-Haberle I, Spasojević I, Fridovich I, Radi R. Catalytic scavenging of peroxynitrite by isomeric Mn(III) N-methylpyridylporphyrins in the presence of reductants. Chem Res Toxicol. 1999;12:442–9.

    Article  CAS  PubMed  Google Scholar 

  135. Batinić-Haberle I, Tovmasyan A, Spasojević I. An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins—from superoxide dismutation to H2O2-driven pathways. Redox Biol. 2015;5:43–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Buettner GR, Wagner BA, Rodgers VG. Quantitative redox biology: an approach to understand the role of reactive species in defining the cellular redox environment. Cell Biochem Biophys. 2013;67:477–83.

    Article  CAS  PubMed  Google Scholar 

  137. Batinić-Haberle I, Cuzzocrea S, Rebouças JS, Ferrer-Sueta G, Mazzon E, Di Paola R, Radi R, Spasojević I, Benov L, Salvemini D. Pure MnTBAP selectively scavenges peroxynitrite over superoxide: comparison of pure and commercial MnTBAP samples to MnTE-2-PyP in two models of oxidative stress injury, an SOD-specific Escherichia coli model and carrageenan-induced pleurisy. Free Radic Biol Med. 2009;46:192–201.

    Article  PubMed  CAS  Google Scholar 

  138. Rajic Z, Tovmasyan A, Spasojević I, Sheng H, Lu M, Li AM, Gralla EB, Warner DS, Benov L, Batinić-Haberle I. A new SOD mimic, Mn(III) ortho N-butoxyethylpyridylporphyrin, combines superb potency and lipophilicity with low toxicity. Free Radic Biol Med. 2012;52:1828–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jaramillo MC, Frye JB, Crapo JD, Briehl MM, Tome ME. Increased manganese superoxide dismutase expression or treatment with manganese porphyrin potentiates dexamethasone-induced apoptosis in lymphoma cells. Cancer Res. 2009;69:5450–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jaramillo MC, Briehl MM, Crapo JD, Batinić-Haberle I, Tome ME. Manganese porphyrin, MnTE-2-PyP5+, acts as a pro-oxidant to potentiate glucocorticoid-induced apoptosis in lymphoma cells. Free Radic Biol Med. 2012;52:1272–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lee K, Briehl MM, Mazar AP, Batinić-Haberle I, Rebouças JS, Glinsmann-Gibson B, Rimsza LM, Tome ME. The copper chelator ATN-224 induces peroxynitrite-dependent cell death in hematological malignancies. Free Radic Biol Med. 2013;60:157–67.

    Article  CAS  PubMed  Google Scholar 

  142. Jaramillo MC, Briehl MM, Batinić-Haberle I, Tome ME. Manganese (III) meso-tetrakis-N-ethylpyridinium-2-yl porphyrin acts as a pro-oxidant to inhibit electron transport chain proteins, modulate bioenergetics, and enhance the response to chemotherapy in lymphoma cells. Free Radic Biol Med. 2015;83:89–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tse HM, Milton MJ, Piganelli JD. Mechanistic analysis of the immunomodulatory effects of a catalytic antioxidant on antigen-presenting cells: implication for their use in targeting oxidation-reduction reactions in innate immunity. Free Radic Biol Med. 2004;36:233–47.

    Article  CAS  PubMed  Google Scholar 

  144. Delmastro-Greenwood MM, Tse HM, Piganelli JD. Effects of metalloporphyrins on reducing inflammation and autoimmunity. Antioxid Redox Signal. 2014;20:2465–77.

    Article  CAS  PubMed  Google Scholar 

  145. Batinić-Haberle I, Spasojević I, Tse HM, Tovmasyan A, Rajic Z, St Clair DK, Vujaskovic Z, Dewhirst MW, Piganelli JD. Design of Mn porphyrins for treating oxidative stress injuries and their redox-based regulation of cellular transcriptional activities. Amino Acids. 2012;42:95–113.

    Article  CAS  PubMed  Google Scholar 

  146. Celic T, Španjol J, Bobinac M, Tovmasyan A, Vukelic I, Rebouças JS, Batinić-Haberle I, Bobinac D. Mn porphyrin-based SOD mimic, MnTnHex-2-PyP5+, and non-SOD mimic, MnTBAP3−, suppressed rat spinal cord ischemia/reperfusion injury via NF-κB pathways. Free Radic Res. 2014;48:1426–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kos I, Benov L, Spasojević I, Rebouças JS, Batinić-Haberle I. High lipophilicity of meta Mn(III) N-alkylpyridylporphyrin-based superoxide dismutase mimics compensates for their lower antioxidant potency and makes them as effective as ortho analogues in protecting superoxide dismutase-deficient Escherichia coli. J Med Chem. 2009;52:7868–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kos I, Rebouças JS, DeFreitas-Silva G, Salvemini D, Vujaskovic Z, Dewhirst MW, Spasojević I, Batinić-Haberle I. Lipophilicity of potent porphyrin-based antioxidants: comparison of ortho and meta isomers of Mn(III) N-alkylpyridylporphyrins. Free Radic Biol Med. 2009;47:72–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Spasojević I, Kos I, Benov LT, Rajic Z, Fels D, Dedeugd C, Ye X, Vujaskovic Z, Rebouças JS, Leong KW, Dewhirst MW, Batinić-Haberle I. Bioavailability of metalloporphyrin-based SOD mimics is greatly influenced by a single charge residing on a Mn site. Free Radic Res. 2011;45:188–200.

    Article  PubMed  CAS  Google Scholar 

  150. Rebouças JS, Spasojević I, Batinić-Haberle I. Pure manganese(III) 5,10,15,20-tetrakis(4-benzoic acid)porphyrin (MnTBAP) is not a superoxide dismutase mimic in aqueous systems: a case of structure-activity relationship as a watchdog mechanism in experimental therapeutics and biology. J Biol Inorg Chem. 2008;13:289–302.

    Article  PubMed  CAS  Google Scholar 

  151. Tovmasyan A, Carballal S, Ghazaryan R, Melikyan L, Weitner T, Maia CGC, Rebouças JS, Radi R, Spasojević I, Benov L, Batinić-Haberle I. Rational design of superoxide dismutase (SOD) mimics: the evaluation of the therapeutic potential of new cationic Mn porphyrins with linear and cyclic substituents. Inorg Chem. 2014;53:11467–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lewis DFV. The P450 catalytic cycle. In: Lewis DFV, editor. Guide to cytochromes P450: structure and function. New York: Taylor & Francis; 2001. p. 49–68.

    Chapter  Google Scholar 

  153. Spasojević I, Batinić-Haberle I. Manganese(III) complexes with porphyrins and related compounds as catalytic scavengers of superoxide. Inorg Chim Acta. 2001;317:230–42.

    Article  Google Scholar 

  154. Lahaye D, Groves JT. Modeling the haloperoxidases: reversible oxygen atom transfer between bromide ion and an oxo-Mn(V) porphyrin. J Inorg Biochem. 2007;101:1786–97.

    Article  CAS  PubMed  Google Scholar 

  155. Lyons JE, Ellis Jr PE. Reactions of alkanes with dioxygen: toward suprabiotic systems. In: Sheldon RA, editor. Metalloporphyrins in catalytic oxidations. New York: Marcel Dekker; 1994. p. 297–324.

    Google Scholar 

  156. Levine RL, Mosoni L, Berlett BS, Stadtman ER. Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci U S A. 1996;93:15036–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Stadtman ER, Moskovitz J, Levine RL. Oxidation of methionine residues of proteins: biological consequences. Antioxid Redox Signal. 2003;5:577–82.

    Article  CAS  PubMed  Google Scholar 

  158. Requejo R, Hurd TR, Costa NJ, Murphy MP. Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage. FEBS J. 2010;277:1465–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pamplona R, Costantini D. Molecular and structural antioxidant defenses against oxidative stress in animals. Am J Physiol Regul Integr Comp Physiol. 2011;301:R843–63.

    Article  CAS  PubMed  Google Scholar 

  160. Bender A, Hajieva P, Moosmann B. Adaptive antioxidant methionine accumulation in respiratory chain complexes explains the use of a deviant genetic code in mitochondria. Proc Natl Acad Sci U S A. 2008;105:16496–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bueno-Janice JC, Tovmasyan A, Batinić-Haberle I. Comprehensive study of GPx activity of different classes of redox-active therapeutics—implications for their therapeutic actions. Free Radic Biol Med. 2015;87:S86–7.

    Article  Google Scholar 

  162. Rebouças JS, Spasojević I, Batinić-Haberle I. Quality of potent Mn porphyrin-based SOD mimics and peroxynitrite scavengers for pre-clinical mechanistic/therapeutic purposes. J Pharm Biomed Anal. 2008;48:1046–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Rebouças JS, Kos I, Vujasković Z, Batinić-Haberle I. Determination of residual manganese in Mn porphyrin-based superoxide dismutase (SOD) and peroxynitrite reductase mimics. J Pharm Biomed Anal. 2009;50:1088–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Marques A, Marin M, Ruasse MF. Hydrogen peroxide oxidation of mustard-model sulfides catalyzed by iron and manganese tetraarylporphyrins. Oxygen transfer to sulfides versus H2O2 dismutation and catalyst breakdown. J Org Chem. 2001;66:7588–95.

    Article  CAS  PubMed  Google Scholar 

  165. Lahaye D, Muthukumaran K, Hung CH, Gryko D, Rebouças JS, Spasojević I, Batinić-Haberle I, Lindsey JS. Design and synthesis of manganese porphyrins with tailored lipophilicity: investigation of redox properties and superoxide dismutase activity. Bioorg Med Chem. 2007;15:7066–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rosenthal RA, Huffman KD, Fisette LW, Damphousse CA, Callaway WB, Malfroy B, Doctrow SR. Orally available Mn porphyrins with superoxide dismutase and catalase activities. J Biol Inorg Chem. 2009;14:979–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Rausaria S, Ghaffari MM, Kamadulski A, Rodgers K, Bryant L, Chen Z, Doyle T, Shaw MJ, Salvemini D, Neumann WL. Retooling manganese(III) porphyrin-based peroxynitrite decomposition catalysts for selectivity and oral activity: a potential new strategy for treating chronic pain. J Med Chem. 2011;54:8658–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Rosenthal RA, Fish B, Hill RP, Huffman KD, Lazarova Z, Mahmood J, Medhora M, Molthen R, Moulder JE, Sonis ST, Tofilon PJ, Doctrow SR. Salen Mn complexes mitigate radiation injury in normal tissues. Anticancer Agents Med Chem. 2011;11:359–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Ynara M. Idemori, Brian R. James, Artak Tovmasyan, Ludmil Benov, Margaret E. Tome, Dayse C. S. Martins, Gilson DeFreitas-Silva, and Shirley Nakagaki, for many helpful scientific discussions throughout these years. Financial support by The Brazilian Research Council (CNPq, Brazil), CAPES Foundation (Ministry of Education, Brazil), Financiadora de Estudos e Projetos (FINEP, Brazil), and the National Institutes of Health (NIH, USA) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlio S. Rebouças .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pinto, V.H.A., Falcão, N.K.S.M., Bueno-Janice, J.C., Spasojević, I., Batinić-Haberle, I., Rebouças, J.S. (2016). Cytochrome P450-Like Biomimetic Oxidation Catalysts Based on Mn Porphyrins as Redox Modulators. In: Batinić-Haberle, I., Rebouças, J., Spasojević, I. (eds) Redox-Active Therapeutics. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-30705-3_9

Download citation

Publish with us

Policies and ethics