Skip to main content

Mn Porphyrin-Based Redox-Active Therapeutics

  • Chapter
  • First Online:

Abstract

Twenty-five years of development gave rise to several lead Mn porphyrins (MnPs) that proved of remarkable efficacy in animal models and are developed towards Clinic. The one, MnTE-2-PyP5+, is already in Canadian Clinical Trials on protection of islets during transplants, while the other one, MnTnBuOE-2-PyP5+, has entered Phase I/II Clinical Trial at Duke University as a radioprotecor of normal brain with glioma patients. The Phase I/II Clinical Trial on radioprotection of salivary glands and mouth mucosa with head and neck cancer patients will start later in 2016.

MnPs were originally developed as mimics of superoxide dismutases (SOD). MnP showed efficacy in different diseases that have oxidative stress in common. Such are cancer, radiation injury, central nervous system injuries (stroke, subarachnoid hemorrhage, spinal cord injury), neurological disorders (ALS, Alzheimer’s), diabetes, and ischemia/reperfusion injuries of liver and kidney. Based on their ability to mimic kinetics and thermodynamics of the catalysis of superoxide (O2 •−) dismutation, the cationic ortho Mn(III) N-substituted pyridylporphyrins (MnPs) were identified as the most powerful mimics. Over years the general knowledge on cell biology, and in particular oxidative stress, has grown. It has been accompanied by the awareness of the ability of Mn porphyrins to interact with numerous small and large reactive species thereby affecting cellular transcription and in turn cell metabolism. The importance of the interactions of MnPs with cellular reductants, such as ascorbate and thiols, was realized early on. Yet the possible therapeutic application of such interactions became obvious only recently. Our studies provided evidence that the ability of MnPs to catalyze O2 •− dismutation parallels their ability to react with other species, such as peroxynitrite (ONOO) and ascorbate, and correlates well with the magnitude of their therapeutic effects. MnPs couple with numerous species they encounter, acting either as prooxidant (such as oxidation of O2 •−, ascorbate, or thiols) or as antioxidant (reduction of O2 •− or ONOO). Recently, the reactivities of SOD mimics towards different thiols (simple thiols such as glutathione and protein thiols such as p50 and p65 subunits of NF-κB) in GPx- and cysteine oxidase-fashion have been extensively studied. It appears that such actions likely predominate in vivo controlling the therapeutic effects of MnPs. Preliminary data suggest also the involvement of Nrf2 in actions of MnPs. The type and the magnitude of the actions of MnPs would ultimately depend upon their concentration, concentration of reactive species they would encounter, and their co-localization at high enough concentrations. Other classes of redox-active drugs are also addressed, yet in part only.

In order to further clarify the nature of in vivo actions of MnPs and other SOD mimics one must keep in mind that with a powerful mimic of SOD enzyme, the reduction potential of Mn site needs to be such that it facilitates equally well both steps of dismutation process, i.e., allow for the equal ability of Mn porphyrin to reduce and oxidize O2 •−. That indicates that SOD mimics, alike SOD enzymes, act as both oxidants (oxidizing O2 •− to oxygen, O2) and antioxidants (reducing O2 •− to peroxide, H2O2). If H2O2 formed during O2 •− reduction step gets removed by enzymatic systems (such as GPx, catalase and peroxiredoxins) as is the case with normal cell, SOD enzyme and its mimic function as antioxidative defense systems. However, such as frequently happens with cancer (or gravely ill cell), the H2O2 removing enzymes become dysfunctional. In turn H2O2 accumulates inside cell and SOD and its mimic cease to function as antioxidative defenses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244:6049–55.

    CAS  PubMed  Google Scholar 

  2. Pasternack RF, Halliwell B. Superoxide dismutase activities of an iron porphyrin and other iron complexes. J Am Chem Soc. 1979;101:1026–31.

    Article  CAS  Google Scholar 

  3. Faulkner KM, Liochev SI, Fridovich I. Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo. J Biol Chem. 1994;269:23471–6.

    CAS  PubMed  Google Scholar 

  4. Archibald FS, Fridovich I. The scavenging of superoxide radical by manganous complexes: in vitro. Arch Biochem Biophys. 1982;214:452–63.

    Article  CAS  PubMed  Google Scholar 

  5. Batinic-Haberle I, Liochev SI, Spasojevic I, Fridovich I. A potent superoxide dismutase mimic: manganese beta-octabromo-meso-tetrakis-(N-methylpyridinium-4-yl) porphyrin. Arch Biochem Biophys. 1997;343:225–33.

    Article  CAS  PubMed  Google Scholar 

  6. Batinic Haberle I, Tovmasyan A, Spasojevic I. The complex mechanistic aspects of redox-active compounds, commonly regarded as SOD mimics. BioInorg React Mech. 2013;9:35–58.

    CAS  Google Scholar 

  7. Batinic-Haberle I, Benov L, Spasojevic I, Fridovich I. The ortho effect makes manganese(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin a powerful and potentially useful superoxide dismutase mimic. J Biol Chem. 1998;273:24521–8.

    Article  CAS  PubMed  Google Scholar 

  8. Batinic-Haberle I, Rajic Z, Tovmasyan A, Reboucas JS, Ye X, Leong KW, Dewhirst MW, Vujaskovic Z, Benov L, Spasojevic I. Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics. Free Radic Biol Med. 2011;51:1035–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Batinic-Haberle I, Reboucas JS, Benov L, Spasojevic I. Chemistry, biology and medical effects of water soluble metalloporphyrins. In: Kadish KM, Smith KM, Guillard R, editors. Handbook of porphyrin science. Singapore: World Scientific; 2011. p. 291–393.

    Google Scholar 

  10. Batinic-Haberle I, Reboucas JS, Spasojevic I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid Redox Signal. 2010;13:877–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Batinić-Haberle I, Spasojević I, Hambright P, Benov L, Crumbliss AL, Fridovich I. Relationship among redox potentials, proton dissociation constants of pyrrolic nitrogens, and in vivo and in vitro superoxide dismutating activities of manganese(III) and iron(III) water-soluble porphyrins. Inorg Chem. 1999;38:4011–22.

    Article  CAS  Google Scholar 

  12. Batinić-Haberle I, Spasojević I, Stevens RD, Hambright P, Fridovich I. Manganese(III) meso-tetrakis(ortho-N-alkylpyridyl)porphyrins. Synthesis, characterization, and catalysis of O2/—dismutation. Dalton Trans. 2002:2689–96.

    Google Scholar 

  13. Batinic-Haberle I, Spasojevic I, Tse HM, Tovmasyan A, Rajic Z, St. Clair DK, Vujaskovic Z, Dewhirst MW, Piganelli JD. Design of Mn porphyrins for treating oxidative stress injuries and their redox-based regulation of cellular transcriptional activities. Amino Acids. 2012;42:95–113.

    Article  CAS  PubMed  Google Scholar 

  14. Batinic-Haberle I, Tovmasyan A, Roberts ER, Vujaskovic Z, Leong KW, Spasojevic I. SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal. 2014;20:2372–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Batinic-Haberle I, Tovmasyan A, Spasojevic I. An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins—from superoxide dismutation to H2O2-driven pathways. Redox Biol. 2015;5:43–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miriyala S, Spasojevic I, Tovmasyan A, Salvemini D, Vujaskovic Z, St. Clair D, Batinic-Haberle I. Manganese superoxide dismutase, MnSOD and its mimics. Biochim Biophys Acta. 2012;1822:794–814.

    Article  CAS  PubMed  Google Scholar 

  17. Tovmasyan A, Sheng H, Weitner T, Arulpragasam A, Lu M, Warner DS, Vujaskovic Z, Spasojevic I, Batinic-Haberle I. Design, mechanism of action, bioavailability and therapeutic effects of mn porphyrin-based redox modulators. Med Princ Pract. 2013;22:103–30.

    Article  PubMed  Google Scholar 

  18. Batinic-Haberle I, Tovmasyan A. Superoxide dismutase mimics and other redox-active therapeutics. In: Armstrong D, Stratton RD, editors. Oxidative stress and antioxidant protection: The science of free radical biology and disease. New York: Wiley; 2016. p. 415–70.

    Chapter  Google Scholar 

  19. Reboucas JS, DeFreitas-Silva G, Spasojevic I, Idemori YM, Benov L, Batinic-Haberle I. Impact of electrostatics in redox modulation of oxidative stress by Mn porphyrins: protection of SOD-deficient Escherichia coli via alternative mechanism where Mn porphyrin acts as a Mn carrier. Free Radic Biol Med. 2008;45:201–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ferrer-Sueta G, Vitturi D, Batinic-Haberle I, Fridovich I, Goldstein S, Czapski G, Radi R. Reactions of manganese porphyrins with peroxynitrite and carbonate radical anion. J Biol Chem. 2003;278:27432–8.

    Article  CAS  PubMed  Google Scholar 

  21. Tovmasyan A, Carballal S, Ghazaryan R, Melikyan L, Weitner T, Maia CG, Reboucas JS, Radi R, Spasojevic I, Benov L, Batinic-Haberle I. Rational design of superoxide dismutase (SOD) mimics: the evaluation of the therapeutic potential of new cationic Mn porphyrins with linear and cyclic substituents. Inorg Chem. 2014;53:11467–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tse HM, Milton MJ, Piganelli JD. Mechanistic analysis of the immunomodulatory effects of a catalytic antioxidant on antigen-presenting cells: implication for their use in targeting oxidation-reduction reactions in innate immunity. Free Radic Biol Med. 2004;36:233–47.

    Article  CAS  PubMed  Google Scholar 

  23. Shan W, Zhong W, Zhao R, Oberley TD. Thioredoxin 1 as a subcellular biomarker of redox imbalance in human prostate cancer progression. Free Radic Biol Med. 2010;49:2078–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arambula JF, Preihs C, Borthwick D, Magda D, Sessler JL. Texaphyrins: tumor localizing redox active expanded porphyrins. Anticancer Agents Med Chem. 2011;11:222–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eckshtain M, Zilbermann I, Mahammed A, Saltsman I, Okun Z, Maimon E, Cohen H, Meyerstein D, Gross Z. Superoxide dismutase activity of corrole metal complexes. Dalton Trans. 2009;38:7879–82.

    Google Scholar 

  26. Spasojevic I, Batinic-Haberle I, Stevens RD, Hambright P, Thorpe AN, Grodkowski J, Neta P, Fridovich I. Manganese(III) biliverdin IX dimethyl ester: a powerful catalytic scavenger of superoxide employing the Mn(III)/Mn(IV) redox couple. Inorg Chem. 2001;40:726–39.

    Article  CAS  PubMed  Google Scholar 

  27. Spasojević I, Batinić-Haberle I. Manganese(III) complexes with porphyrins and related compounds as catalytic scavengers of superoxide. Inorg Chim Acta. 2001;317:230–42.

    Article  Google Scholar 

  28. Kos I, Reboucas JS, DeFreitas-Silva G, Salvemini D, Vujaskovic Z, Dewhirst MW, Spasojevic I, Batinic-Haberle I. Lipophilicity of potent porphyrin-based antioxidants: comparison of ortho and meta isomers of Mn(III) N-alkylpyridylporphyrins. Free Radic Biol Med. 2009;47:72–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tovmasyan A, Weitner T, Sheng H, Lu M, Rajic Z, Warner DS, Spasojevic I, Reboucas JS, Benov L, Batinic-Haberle I. Differential coordination demands in Fe versus Mn water-soluble cationic metalloporphyrins translate into remarkably different aqueous redox chemistry and biology. Inorg Chem. 2013;52:5677–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kos I, Benov L, Spasojevic I, Reboucas JS, Batinic-Haberle I. High lipophilicity of meta Mn(III) N-alkylpyridylporphyrin-based superoxide dismutase mimics compensates for their lower antioxidant potency and makes them as effective as ortho analogues in protecting superoxide dismutase-deficient Escherichia coli. J Med Chem. 2009;52:7868–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pollard JM, Reboucas JS, Durazo A, Kos I, Fike F, Panni M, Gralla EB, Valentine JS, Batinic-Haberle I, Gatti RA. Radioprotective effects of manganese-containing superoxide dismutase mimics on ataxia-telangiectasia cells. Free Radic Biol Med. 2009;47:250–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weitner T, Kos I, Sheng H, Tovmasyan A, Reboucas JS, Fan P, Warner DS, Vujaskovic Z, Batinic-Haberle I, Spasojevic I. Comprehensive pharmacokinetic studies and oral bioavailability of two Mn porphyrin-based SOD mimics, MnTE-2-PyP(5+) and MnTnHex-2-PyP(5+). Free Radic Biol Med. 2013;58:73–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ashcraft KA, Boss MK, Tovmasyan A, Roy Choudhury K, Fontanella AN, Young KH, Palmer GM, Birer SR, Landon CD, Park W, Das SK, Weitner T, Sheng H, Warner DS, Brizel DM, Spasojevic I, Batinic-Haberle I, Dewhirst MW. Novel manganese-porphyrin superoxide dismutase-mimetic widens the therapeutic margin in a preclinical head and neck cancer model. Int J Radiat Oncol Biol Phys. 2015;93:892–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Prasanna PG, Narayanan D, Hallett K, Bernhard EJ, Ahmed MM, Evans G, Vikram B, Weingarten M, Coleman CN. Radioprotectors and radiomitigators for improving radiation therapy: the small business innovation research (SBIR) gateway for accelerating clinical translation. Radiat Res. 2015;184:235–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rajic Z, Tovmasyan A, Spasojevic I, Sheng H, Lu M, Li AM, Gralla EB, Warner DS, Benov L, Batinic-Haberle I. A new SOD mimic, Mn(III) ortho N-butoxyethylpyridylporphyrin, combines superb potency and lipophilicity with low toxicity. Free Radic Biol Med. 2012;52:1828–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sheng H, Spasojevic I, Tse HM, Jung JY, Hong J, Zhang Z, Piganelli JD, Batinic-Haberle I, Warner DS. Neuroprotective efficacy from a lipophilic redox-modulating Mn(III) N-hexylpyridylporphyrin, MnTnHex-2-PyP: rodent models of ischemic stroke and subarachnoid hemorrhage. J Pharmacol Exp Ther. 2011;338:906–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martell AE, Motekaitis RJ. The determination and use of stability constants. New York: VCH; 1992.

    Google Scholar 

  38. Riley DP, Lennon PJ, Neumann WL, Weiss RH. Toward the rational design of superoxide dismutase mimics: mechanistic studies for the elucidation of substituent effects on the catalytic activity of macrocyclic manganese(II) complexes. J Am Chem Soc. 1997;119:6522–8.

    Article  CAS  Google Scholar 

  39. Tovmasyan A, Reboucas JS, Benov L. Simple biological systems for assessing the activity of superoxide dismutase mimics. Antioxid Redox Signal. 2014;20:2416–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ezzeddine R, Al-Banaw A, Tovmasyan A, Craik JD, Batinic-Haberle I, Benov LT. Effect of molecular characteristics on cellular uptake, subcellular localization, and phototoxicity of Zn(II) N-alkylpyridylporphyrins. J Biol Chem. 2013;288:36579–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tovmasyan AG, Rajic Z, Spasojevic I, Reboucas JS, Chen X, Salvemini D, Sheng H, Warner DS, Benov L, Batinic-Haberle I. Methoxy-derivatization of alkyl chains increases the in vivo efficacy of cationic Mn porphyrins. Synthesis, characterization, SOD-like activity, and SOD-deficient E. coli study of meta Mn(III) N-methoxyalkylpyridylporphyrins. Dalton Trans. 2011;40:4111–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Spasojevic I, Chen Y, Noel TJ, Fan P, Zhang L, Reboucas JS, St. Clair DK, Batinic-Haberle I. Pharmacokinetics of the potent redox-modulating manganese porphyrin, MnTE-2-PyP(5+), in plasma and major organs of B6C3F1 mice. Free Radic Biol Med. 2008;45:943–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Spasojevic I, Li A, Tovmasyan A, Rajic Z, Salvemini D, St. Clair D, Valentine JS, Vujaskovic Z, Gralla EB, Batinic-Haberle I. Accumulation of porphyrin-based SOD mimics in mitochondria is proportional to their lipophilicity: S-cerevisiae study of ortho Mn(III) N-alkylpyridylporphyrins. Free Radic Biol Med. 2010;49:S199.

    Article  Google Scholar 

  44. Spasojevic I, Weitner T, Tovmasyan A, Sheng H, Miriyala S, Leu D, Rajic Z, Warner DS, St. Clair D, Huang T-T, Batinic-Haberle I. Pharmacokinetics, brain hippocampus and cortex, and mitochondrial accumulation of a new generation of lipophilic redox-active therapeutic, Mn(III) meso tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP5+, in comparison with its ethyl and N-hexyl analogs, MnTE-2-PyP5+ and MnTnHex-2-PyP5+. Free Radic Biol Med. 2013;65:S132.

    Article  Google Scholar 

  45. Liberman EA, Topaly VP, Tsofina LM, Jasaitis AA, Skulachev VP. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature. 1969;222:1076–8.

    Article  CAS  PubMed  Google Scholar 

  46. Murphy MP. Targeting lipophilic cations to mitochondria. Biochim Biophys Acta. 2008;1777:1028–31.

    Article  CAS  PubMed  Google Scholar 

  47. Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007;47:629–56.

    Article  CAS  PubMed  Google Scholar 

  48. Spasojevic I, Miriyala S, Tovmasyan A, Salvemini D, Vujaskovic Z, Batinic-Haberle I, St. Clair D. Lipophilicity of Mn(III) N-alkylpyridylporphyrins dominates their accumulation within mitochondria and therefore in vivo efficacy. A mouse study. Free Radic Biol Med. 2011;51:S98.

    Article  Google Scholar 

  49. Li AM, Martins J, Tovmasyan A, Valentine JS, Batinic-Haberle I, Spasojevic I, Gralla EB. Differential localization and potency of manganese porphyrin superoxide dismutase-mimicking compounds in Saccharomyces cerevisiae. Redox Biol. 2014;3:1–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Spasojevic I, Chen Y, Noel TJ, Yu Y, Cole MP, Zhang L, Zhao Y, St. Clair DK, Batinic-Haberle I. Mn porphyrin-based superoxide dismutase (SOD) mimic, MnIIITE-2-PyP5+, targets mouse heart mitochondria. Free Radic Biol Med. 2007;42:1193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ferrer-Sueta G, Hannibal L, Batinic-Haberle I, Radi R. Reduction of manganese porphyrins by flavoenzymes and submitochondrial particles: a catalytic cycle for the reduction of peroxynitrite. Free Radic Biol Med. 2006;41:503–12.

    Article  CAS  PubMed  Google Scholar 

  52. Bakthavatchalu V, Dey S, Xu Y, Noel T, Jungsuwadee P, Holley AK, Dhar SK, Batinic-Haberle I, St. Clair DK. Manganese superoxide dismutase is a mitochondrial fidelity protein that protects Polγ against UV-induced inactivation. Oncogene. 2012;31:2129–39.

    Article  CAS  PubMed  Google Scholar 

  53. Holley AK, Xu Y, Noel T, Bakthavatchalu V, Batinic-Haberle I, St. Clair DK. Manganese superoxide dismutase-mediated inside-out signaling in HaCaT human keratinocytes and SKH-1 mouse skin. Antioxid Redox Signal. 2014;20:2347–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miriyala S, Thippakorn C, Chaiswing L, Xu Y, Noel T, Tovmasyan A, Batinic-Haberle I, Vander Kooi CW, Chi W, Latif AA, Panchatcharam M, Prachayasittikul V, Allan Butterfield D, Vore M, Moscow J, St. Clair DK. Novel role of 4-hydroxy-2-nonenal in AIFm2-mediated mitochondrial stress signaling. Free Radic Biol Med. 2015;91:68–80.

    Article  PubMed  CAS  Google Scholar 

  55. Zhao Y, Chaiswing L, Oberley TD, Batinic-Haberle I, St. Clair W, Epstein CJ, St. Clair D. A mechanism-based antioxidant approach for the reduction of skin carcinogenesis. Cancer Res. 2005;65:1401–5.

    Article  CAS  PubMed  Google Scholar 

  56. Zhao Y, Miriyala S, Miao L, Mitov M, Schnell D, Dhar SK, Cai J, Klein JB, Sultana R, Butterfield DA, Vore M, Batinic-Haberle I, Bondada S, St. Clair DK. Redox proteomic identification of HNE-bound mitochondrial proteins in cardiac tissues reveals a systemic effect on energy metabolism after doxorubicin treatment. Free Radic Biol Med. 2014;72:55–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Aitken JB, Shearer EL, Giles NM, Lai B, Vogt S, Reboucas JS, Batinic-Haberle I, Lay PA, Giles GI. Intracellular targeting and pharmacological activity of the superoxide dismutase mimics MnTE-2-PyP5+ and MnTnHex-2-PyP5+ regulated by their porphyrin ring substituents. Inorg Chem. 2013;52:4121–3.

    Article  CAS  PubMed  Google Scholar 

  58. Odeh AM, Craik JD, Ezzeddine R, Tovmasyan A, Batinic-Haberle I, Benov LT. Targeting mitochondria by Zn(II)N-alkylpyridylporphyrins: the impact of compound sub-mitochondrial partition on cell respiration and overall photodynamic efficacy. PLoS One. 2014;9, e108238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Spasojevic I, Kos I, Benov LT, Rajic Z, Fels D, Dedeugd C, Ye X, Vujaskovic Z, Reboucas JS, Leong KW, Dewhirst MW, Batinic-Haberle I. Bioavailability of metalloporphyrin-based SOD mimics is greatly influenced by a single charge residing on a Mn site. Free Radic Res. 2011;45:188–200.

    Article  CAS  PubMed  Google Scholar 

  60. Thomas M, Craik JD, Tovmasyan A, Batinic-Haberle I, Benov LT. Amphiphilic cationic Zn-porphyrins with high photodynamic antimicrobial activity. Future Microbiol. 2015;10:709–24.

    Article  CAS  PubMed  Google Scholar 

  61. Jaramillo MC, Briehl MM, Crapo JD, Batinic-Haberle I, Tome ME. Manganese porphyrin, MnTE-2-PyP5+, acts as a pro-oxidant to potentiate glucocorticoid-induced apoptosis in lymphoma cells. Free Radic Biol Med. 2012;52:1272–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Benov L, Craik J, Batinic-Haberle I. Protein damage by photo-activated Zn(II) N-alkylpyridylporphyrins. Amino Acids. 2012;42:117–28.

    Article  CAS  PubMed  Google Scholar 

  63. Tovmasyan A, Sampaio RS, Boss MK, Bueno-Janice JC, Bader BH, Thomas M, Reboucas JS, Orr M, Chandler JD, Go YM, Jones DP, Venkatraman TN, Haberle S, Kyui N, Lascola CD, Dewhirst MW, Spasojevic I, Benov L, Batinic-Haberle I. Anticancer therapeutic potential of Mn porphyrin/ascorbate system. Free Radic Biol Med. 2015;89:1231–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tovmasyan A, Maia CG, Weitner T, Carballal S, Sampaio RS, Lieb D, Ghazaryan R, Ivanovic-Burmazovic I, Ferrer-Sueta G, Radi R, Reboucas JS, Spasojevic I, Benov L, Batinic-Haberle I. A comprehensive evaluation of catalase-like activity of different classes of redox-active therapeutics. Free Radic Biol Med. 2015;86:308–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bueno-Janice JC, Tovmasyan A, Batinic-Haberle I. Comprehensive study of GPx activity of different classes of redox-active therapeutics—implications for their therapeutic actions. Free Rad Biol Med. 2015;87:S86–7.

    Article  Google Scholar 

  66. Tovmasyan A, Weitner T, Jaramillo M, Wedmann R, Roberts ERH, Leong KW, Filipovic M, Ivanovic-Burmazovic I, Benov L, Tome ME, Batinic-Haberle I. We have come a long way with Mn porphyrins: from superoxide dismutation to H2O2-driven pathways. Free Radic Biol Med. 2013;65:S133.

    Article  Google Scholar 

  67. Delmastro-Greenwood MM, Votyakova T, Goetzman E, Marre ML, Previte DM, Tovmasyan A, Batinic-Haberle I, Trucco MM, Piganelli JD. Mn porphyrin regulation of aerobic glycolysis: implications on the activation of diabetogenic immune cells. Antioxid Redox Signal. 2013;19:1902–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sheng H, Yang W, Fukuda S, Tse HM, Paschen W, Johnson K, Batinic-Haberle I, Crapo JD, Pearlstein RD, Piganelli J, Warner DS. Long-term neuroprotection from a potent redox-modulating metalloporphyrin in the rat. Free Radic Biol Med. 2009;47:917–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Alvarez L, Suarez SA, Bikiel DE, Reboucas JS, Batinic-Haberle I, Marti MA, Doctorovich F. Redox potential determines the reaction mechanism of HNO donors with Mn and Fe porphyrins: defining the better traps. Inorg Chem. 2014;53:7351–60.

    Article  CAS  PubMed  Google Scholar 

  70. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. New York: Oxford University Press; 2015.

    Book  Google Scholar 

  71. Winterbourn CC. The biological chemistry of hydrogen peroxide. Methods Enzymol. 2013;528:3–25.

    Article  CAS  PubMed  Google Scholar 

  72. Winterbourn CC, Peskin AV, Parsons-Mair HN. Thiol oxidase activity of copper, zinc superoxide dismutase. J Biol Chem. 2002;277:1906–11.

    Article  CAS  PubMed  Google Scholar 

  73. Gauter-Fleckenstein B, Fleckenstein K, Owzar K, Jiang C, Reboucas JS, Batinic-Haberle I, Vujaskovic Z. Early and late administration of MnTE-2-PyP5+ in mitigation and treatment of radiation-induced lung damage. Free Radic Biol Med. 2010;48:1034–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell. 2004;5:429–41.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang Y, Zhang X, Rabbani ZN, Jackson IL, Vujaskovic Z. Oxidative stress mediates radiation lung injury by inducing apoptosis. Int J Radiat Oncol Biol Phys. 2012;83:740–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cohen J, Dorai T, Ding C, Batinic-Haberle I, Grasso M. The administration of renoprotective agents extends warm ischemia in a rat model. J Endourol. 2013;27:343–8.

    Article  PubMed  Google Scholar 

  77. Dorai T, Fishman AI, Ding C, Batinic-Haberle I, Goldfarb DS, Grasso M. Amelioration of renal ischemia-reperfusion injury with a novel protective cocktail. J Urol. 2011;186:2448–54.

    Article  CAS  PubMed  Google Scholar 

  78. Vukelic I, Celic T, Rubinic N, Spanjol J, Bobinac M, Tovmasyan A, Oberley-Deegan R, Batinic-Haberle I, Bobinac D. Understanding redox biology behind the therapeutic effects of redox active Mn porphyrins in spinal cord ischemia/reperfusion injury. Free Radic Biol Med. 2015;87:S97–8.

    Article  Google Scholar 

  79. Gauter-Fleckenstein B, Fleckenstein K, Owzar K, Jiang C, Batinic-Haberle I, Vujaskovic Z. Comparison of two Mn porphyrin-based mimics of superoxide dismutase in pulmonary radioprotection. Free Radic Biol Med. 2008;44:982–9.

    Article  CAS  PubMed  Google Scholar 

  80. Gauter-Fleckenstein B, Reboucas JS, Fleckenstein K, Tovmasyan A, Owzar K, Jiang C, Batinic-Haberle I, Vujaskovic Z. Robust rat pulmonary radioprotection by a lipophilic Mn N-alkylpyridylporphyrin, MnTnHex-2-PyP(5+). Redox Biol. 2014;2:400–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rabbani ZN, Spasojevic I, Zhang X, Moeller BJ, Haberle S, Vasquez-Vivar J, Dewhirst MW, Vujaskovic Z, Batinic-Haberle I. Antiangiogenic action of redox-modulating Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+), via suppression of oxidative stress in a mouse model of breast tumor. Free Radic Biol Med. 2009;47:992–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Moeller BJ, Batinic-Haberle I, Spasojevic I, Rabbani ZN, Anscher MS, Vujaskovic Z, Dewhirst MW. A manganese porphyrin superoxide dismutase mimetic enhances tumor radioresponsiveness. Int J Radiat Oncol Biol Phys. 2005;63:545–52.

    Article  CAS  PubMed  Google Scholar 

  83. Weitzel DH, Tovmasyan A, Ashcraft KA, Rajic Z, Weitner T, Liu C, Li W, Buckley AF, Prasad MR, Young KH, Rodriguiz RM, Wetsel WC, Peters KB, Spasojevic I, Herndon II JE, Batinic-Haberle I, Dewhirst MW. Radioprotection of the brain white matter by Mn(III) N-butoxyethylpyridylporphyrin-based superoxide dismutase mimic MnTnBuOE-2-PyP5+. Mol Cancer Ther. 2015;14:70–9.

    Article  CAS  PubMed  Google Scholar 

  84. Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014;39:199–218.

    Article  CAS  PubMed  Google Scholar 

  85. Jaramillo MC, Zhang DD. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 2013;27:2179–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53:401–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Carroll D, Zhao Y, Batinic-Haberle I, St. Clair D. A novel redox-based approach to myelodysplastic syndrome (MDS) therapy. Free Radic Biol Med. 2015;87:S87.

    Article  Google Scholar 

  88. Sheng H, Enghild JJ, Bowler R, Patel M, Batinic-Haberle I, Calvi CL, Day BJ, Pearlstein RD, Crapo JD, Warner DS. Effects of metalloporphyrin catalytic antioxidants in experimental brain ischemia. Free Radic Biol Med. 2002;33:947–61.

    Article  CAS  PubMed  Google Scholar 

  89. Sheng H, Spasojevic I, Warner DS, Batinic-Haberle I. Mouse spinal cord compression injury is ameliorated by intrathecal cationic manganese(III) porphyrin catalytic antioxidant therapy. Neurosci Lett. 2004;366:220–5.

    Article  CAS  PubMed  Google Scholar 

  90. Piganelli JD, Flores SC, Cruz C, Koepp J, Batinic-Haberle I, Crapo J, Day B, Kachadourian R, Young R, Bradley B, Haskins K. A metalloporphyrin-based superoxide dismutase mimic inhibits adoptive transfer of autoimmune diabetes by a diabetogenic T-cell clone. Diabetes. 2002;51:347–55.

    Article  CAS  PubMed  Google Scholar 

  91. Jaramillo MC, Briehl MM, Batinic-Haberle I, Tome ME. Manganese (III) meso-tetrakis N-ethylpyridinium-2-yl porphyrin acts as a pro-oxidant to inhibit electron transport chain proteins, modulate bioenergetics, and enhance the response to chemotherapy in lymphoma cells. Free Radic Biol Med. 2015;83:89–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jaramillo MC, Frye JB, Crapo JD, Briehl MM, Tome ME. Increased manganese superoxide dismutase expression or treatment with manganese porphyrin potentiates dexamethasone-induced apoptosis in lymphoma cells. Cancer Res. 2009;69:5450–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Evans MK, Tovmasyan A, Batinic-Haberle I, Devi GR. Mn porphyrin in combination with ascorbate acts as a pro-oxidant and mediates caspase-independent cancer cell death. Free Radic Biol Med. 2014;68:302–14.

    Article  CAS  PubMed  Google Scholar 

  94. Delmastro-Greenwood MM, Tse HM, Piganelli JD. Effects of metalloporphyrins on reducing inflammation and autoimmunity. Antioxid Redox Signal. 2014;20:2465–77.

    Article  CAS  PubMed  Google Scholar 

  95. Holley AK, Miao L, St. Clair DK, St. Clair WH. Redox-modulated phenomena and radiation therapy: the central role of superoxide dismutases. Antioxid Redox Signal. 2014;20:1567–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Jumbo-Lucioni PP, Ryan EL, Hopson ML, Bishop HM, Weitner T, Tovmasyan A, Spasojevic I, Batinic-Haberle I, Liang Y, Jones DP, Fridovich-Keil JL. Manganese-based superoxide dismutase mimics modify both acute and long-term outcome severity in a Drosophila melanogaster model of classic Galactosemia. Antioxid Redox Signal. 2014;20:2361–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Sheng H, Chaparro RE, Sasaki T, Izutsu M, Pearlstein RD, Tovmasyan A, Warner DS. Metalloporphyrins as therapeutic catalytic oxidoreductants in central nervous system disorders. Antioxid Redox Signal. 2014;20:2437–64.

    Article  CAS  PubMed  Google Scholar 

  98. Oberley-Deegan RE, Steffan JJ, Rove KO, Pate KM, Weaver MW, Spasojevic I, Frederick B, Raben D, Meacham RB, Crapo JD, Koul HK. The antioxidant, MnTE-2-PyP, prevents side-effects incurred by prostate cancer irradiation. PLoS One. 2012;7, e44178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Granieri MA, Tovmasyan A, Yan H, Lu X, Mao L, Macias E, Spasojevic I, Batinic-Haberle I, Peterson A, Koontz BF. Radioprotection of erectile function using novel anti-oxidant in the rat. J Sex Med. 2015;12:178–9.

    Google Scholar 

  100. Batinic-Haberle I, Tovmasyan A, Weitner T, Rajic Z, Keir ST, Huang T-T, Leu D, Weitzel DH, Beausejour CM, Miriyala S, Roberts ERH, Dewhirst MW, St. Clair D, Leong KW, Spasojevic I, Piganelli J, Tome M. Mechanistic considerations of the therapeutic effects of Mn porphyrins, commonly regarded as SOD mimics, in anticancer therapy: lessons from brain and lymphoma studies. Free Radic Biol Med. 2013;65:S120–1.

    Article  Google Scholar 

  101. Beausejour CM, Palacio L, Le O, Batinic-Haberle I, Sharpless NE, Marcoux S, Laverdiere C. Decreased neurogenesis following exposure to ionizing radiation: A role for p16INK4a-induced senescence. Cell Senescence in Cancer and Ageing. Hinxton: Wellcome Trust Genome Campus; 2013.

    Google Scholar 

  102. Leu D, Zou Y, Weitner T, Tovmasyan A, Spasojevic I, Batinic-Haberle I, Huang T-T. Radiation protection of hippocampal neurogenesis with Mn-containing porphyrins. The 60th annual meeting of the radiation research society, Las Vegas, Nevada; 2014.

    Google Scholar 

  103. Batinic-Haberle I, Keir ST, Rajic Z, Tovmasyan A, Spasojevic I, Dewhirst MW, Bigner DD. Glioma growth suppression via modulation of cellular redox status by a lipophilic Mn porphyrin. Mid-Winter SPORE Meeting. 2011;31–2.

    Google Scholar 

  104. Archambeau JO, Tovmasyan A, Pearlstein RD, Crapo JD, Batinic-Haberle I. Superoxide dismutase mimic, MnTE-2-PyP(5+) ameliorates acute and chronic proctitis following focal proton irradiation of the rat rectum. Redox Biol. 2013;1:599–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ye X, Fels D, Tovmasyan A, Aird KM, Dedeugd C, Allensworth JL, Kos I, Park W, Spasojevic I, Devi GR, Dewhirst MW, Leong KW, Batinic-Haberle I. Cytotoxic effects of Mn(III) N-alkylpyridylporphyrins in the presence of cellular reductant, ascorbate. Free Radic Res. 2011;45:1289–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Batinic-Haberle I, Spasojevic I, Stevens RD, Hambright P, Neta P, Okado-Matsumoto A, Fridovich I. New class of potent catalysts of O2.-dismutation. Mn(III) ortho-methoxyethylpyridyl- and di-ortho-methoxyethylimidazolylporphyrins. Dalton Trans. 2004;(11):1696–702.

    Google Scholar 

  107. Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, Buettner GR, Shacter E, Levine M. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci U S A. 2005;102:13604–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen Q, Espey MG, Sun AY, Lee JH, Krishna MC, Shacter E, Choyke PL, Pooput C, Kirk KL, Buettner GR, Levine M. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc Natl Acad Sci U S A. 2007;104:8749–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC, Khosh DB, Drisko J, Levine M. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci U S A. 2008;105:11105–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hoffer LJ, Levine M, Assouline S, Melnychuk D, Padayatty SJ, Rosadiuk K, Rousseau C, Robitaille L, Miller Jr WH. Phase I clinical trial of i.v. ascorbic acid in advanced malignancy. Ann Oncol. 2008;19:1969–74.

    Article  CAS  PubMed  Google Scholar 

  111. Levine M, Espey MG, Chen Q. Losing and finding a way at C: new promise for pharmacologic ascorbate in cancer treatment. Free Radic Biol Med. 2009;47:27–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Monti DA, Mitchell E, Bazzan AJ, Littman S, Zabrecky G, Yeo CJ, Pillai MV, Newberg AB, Deshmukh S, Levine M. Phase I evaluation of intravenous ascorbic acid in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. PLoS One. 2012;7, e29794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Welsh JL, Wagner BA, van’t Erve TJ, Zehr PS, Berg DJ, Halfdanarson TR, Yee NS, Bodeker KL, Du J, Roberts II LJ, Drisko J, Levine M, Buettner GR, Cullen JJ. Pharmacological ascorbate with gemcitabine for the control of metastatic and node-positive pancreatic cancer (PACMAN): results from a phase I clinical trial. Cancer Chemother Pharmacol. 2013;71:765–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yulyana Y, Tovmasyan A, Ho IA, Sia KC, Newman JP, Ng WH, Guo CM, Hui KM, Batinic-Haberle I, Lam PY. Redox-active Mn porphyrin-based potent SOD mimic, MnTnBuOE-2-PyP, enhances carbenoxolone-mediated TRAIL-induced apoptosis in glioblastoma multiforme. Stem Cell Rev. 2016;12(1):140–55.

    Google Scholar 

  115. Rawal M, Schroeder SR, Wagner BA, Cushing CM, Welsh JL, Button AM, Du J, Sibenaller ZA, Buettner GR, Cullen JJ. Manganoporphyrins increase ascorbate-induced cytotoxicity by enhancing H2O2 generation. Cancer Res. 2013;73:5232–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cieslak JA, Strother RK, Rawal M, Du J, Doskey CM, Schroeder SR, Button A, Wagner BA, Buettner GR, Cullen JJ. Manganoporphyrins and ascorbate enhance gemcitabine cytotoxicity in pancreatic cancer. Free Radic Biol Med. 2015;83:227–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tovmasyan A, Bueno-Janice JC, Boss M-K, Orr M, Chandler JD, Weitzel DH, Sampaio RS, Reboucas JS, Go Y-M, Jones DP, Dewhirst MW, Spasojevic I, Benov L, Batinic-Haberle I. Mn porphyrin-based SOD mimic and vitamin C enhance radiation-induced tumor growth inhibition. Free Rad Biol Med. 2015;87:S97.

    Article  Google Scholar 

  118. Tian J, Peehl DM, Knox SJ. Metalloporphyrin synergizes with ascorbic acid to inhibit cancer cell growth through fenton chemistry. Cancer Biother Radiopharm. 2010;25:439–48.

    Article  CAS  PubMed  Google Scholar 

  119. Boss MK, Tovmasyan A, Batinic-Haberle I, Malcolm J, Oldham M, Dewhirst MW. MnBuOE affects the development of pulmonary metastasis in an orthotopic mammary carcinoma model in a contrasting manner according to the tumor redox microenvironment. 61st annual meeting of the radiation research society. Weston; 2015: Submitted for publication.

    Google Scholar 

  120. Fernandes AS, Florido A, Cipriano M, Batinic-Haberle I, Miranda J, Saraiva N, Guerreiro PS, Castro M, Oliveira NG. Combined effect of the SOD mimic MnTnHex-2-PyP5+ and doxorubicin on the migration and invasiveness of breast cancer cells. Toxicol Lett. 2013;221:S59–256.

    Google Scholar 

  121. Takada Y, Bhardwaj A, Potdar P, Aggarwal BB. Nonsteroidal anti-inflammatory agents differ in their ability to suppress NF-kappaB activation, inhibition of expression of cyclooxygenase-2 and cyclin D1, and abrogation of tumor cell proliferation. Oncogene. 2004;23:9247–58.

    CAS  PubMed  Google Scholar 

  122. Gad SC, Sullivan Jr DW, Crapo JD, Spainhour CB. A nonclinical safety assessment of MnTE-2-PyP, a manganese porphyrin. Int J Toxicol. 2013;32:274–87.

    Article  CAS  PubMed  Google Scholar 

  123. Reboucas JS, Spasojevic I, Batinic-Haberle I. Pure manganese(III) 5,10,15,20-tetrakis(4-benzoic acid)porphyrin (MnTBAP) is not a superoxide dismutase mimic in aqueous systems: a case of structure-activity relationship as a watchdog mechanism in experimental therapeutics and biology. J Biol Inorg Chem. 2008;13:289–302.

    Article  CAS  PubMed  Google Scholar 

  124. Celic T, Spanjol J, Bobinac M, Tovmasyan A, Vukelic I, Reboucas JS, Batinic-Haberle I, Bobinac D. Mn porphyrin-based SOD mimic, MnTnHex-2-PyP(5+), and non-SOD mimic, MnTBAP(3-), suppressed rat spinal cord ischemia/reperfusion injury via NF-kappaB pathways. Free Radic Res. 2014;48:1426–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Reboucas JS, Spasojevic I, Batinic-Haberle I. Quality of potent Mn porphyrin-based SOD mimics and peroxynitrite scavengers for pre-clinical mechanistic/therapeutic purposes. J Pharm Biomed Anal. 2008;48:1046–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Batinic-Haberle I, Ndengele MM, Cuzzocrea S, Reboucas JS, Spasojevic I, Salvemini D. Lipophilicity is a critical parameter that dominates the efficacy of metalloporphyrins in blocking the development of morphine antinociceptive tolerance through peroxynitrite-mediated pathways. Free Radic Biol Med. 2009;46:212–9.

    Article  CAS  PubMed  Google Scholar 

  127. Orrell RW. AEOL-10150 (Aeolus). Curr Opin Investig Drugs. 2006;7:70–80.

    CAS  PubMed  Google Scholar 

  128. Slosky LM, Vanderah TW. Therapeutic potential of peroxynitrite decomposition catalysts: a patent review. Expert Opin Ther Pat. 2015;25(4):443–66.

    Article  CAS  PubMed  Google Scholar 

  129. Gad SC, Sullivan DW Jr, Spasojevic I, Mujer CV, Spainhour CB, Crapo JD. Nonclinical Safety and Toxicokinetics of MnTnBuOE-2-PyP5+ (BMX-001). Int J Toxicol. 2016;35:438–53.

    Google Scholar 

Download references

Acknowledgements

Over years multiple funding mechanisms have supported development of SOD mimics; only few are listed here. IBH, AT, and IS acknowledge NIH 1R03-NS082704-01, NIH U19AI067798, DTRI, Wallace H. Coulter Foundation, BioMimetix JVLLC (USA), and NC Biotechnology BIG Award (#2016-BIG-6518). AT acknowledges mini-fellowship award from SFRBM. IS is grateful for the support of NIH Core Grant, 5-P30-CA14236-29 that enabled the synthetic and pharmacokinetic studies. IBH also acknowledges the financial help from joint Benov/Batinić-Haberle Kuwait grants (MB02/12, YM04/14 and SRUL02/13), and joint Reboucas/Batinić-Haberle Brazilian CNPq and CAPES grants. IBH and IS are consultants with BioMimetix JVLLC and hold equities in BioMimetix JVLLC. IBH, IS, and Duke University have patent rights and have licensed technologies to BioMimetix JVLLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Batinić-Haberle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Batinić-Haberle, I., Tovmasyan, A., Spasojević, I. (2016). Mn Porphyrin-Based Redox-Active Therapeutics. In: Batinić-Haberle, I., Rebouças, J., Spasojević, I. (eds) Redox-Active Therapeutics. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-30705-3_8

Download citation

Publish with us

Policies and ethics